

 28th ACM International Collegiate Programming Contest

 Asia Regional Contest 2003, Aizu, Japan

Java Challenge Contest

SSnnaakkeess aanndd RRaabbbbii ttss

Contents

November 1-3, 2003
Aizu-Wakamatsu

• General Information 1

• Control Operations 2

• Template Program 2

• Design and Debugging 4

• Submission Results & Tournament.............. 6

 1

1. General Information

 The big snake was placed on the magical island with rabbits playing on the wonderful grass.
Rabbits are fat and move slowly. But they can jump on stones as well as hide outside the borders of the
island’s grass area. Under a magical force the snake can’t stop its movement. It can only control its
direction of movement. The snake must collect rabbits for leaving this island.

Your mission is to help the snake in collecting the rabbits. Importantly, there is an opponent snake,
which implements the same job. The winner of this competition should collect more rabbits than the
opponent. Design an effective algorithm and write a program simulating the snake behavior.

2. Control Operations

 The island size is 40x40 cells. The cell coordinates can be changed from 0 to 39. The cell with
zeroed coordinates is in the upper-left corner. Each cell can be empty, or occupied by a snake body,
stone and/or a rabbit. Snakes have 15 cells in length. During one turn a snake can only move to
neighboring cells. Each round lasts for fixed amount of timer steps (about 500 steps or 50 seconds).
A round is finished when:

• There are no rabbits left.
• Countdown timer reached zero value.

There are fixed amount of rabbits and stones in each round during competition.
As mentioned above, it is necessary to collect more rabbits than opponent to win the round. The result
of match is calculated from two rounds results. The second round played with swapped positions of
snakes. If it is a draw after two rounds, the third round must be played and if it is still a draw, the
winner will be determined randomly.

 2

A snake can observe game environment and receive information about:
1. Amount and positions of stones,
2. Amount and positions of rabbits,
3. Self and counterpart snake body coordinates (position of each chain),
4. Timer value,
5. Snake own state parameters: the head direction, movement status, anticipated head position and

the score.

All these functions to receive information are thoroughly described in the API section.

As was pointed above, a snake never stops its movement except several cases:

- When a snake met a stone,
- When a snake reached an island border,
- When a snake tries to cross its body,
- When the opponent snake blocks your snake.

 The snake program should calculate the next turn command. The possible commands are Turn
Left or Turn Right . If there are no commands specified for the turn then the snake will remain
moving forward in the same direction. The calculation time for one turn is limited. It is about 100ms.
The snake keeps current direction if time period of the current turn is expired. It’s better to synchronize
your snake with timer using waitNextTurn() method.

Rabbits can occasionally move to neighboring cells. They can also climb on stones, jump over the
snake or island border. In these cases snakes can’t collect them.

3. Template Program and API manual

 This section contains an example of a Java-program simulating the snake behavior as well as
description of the class Snake. You can edit this file to create your own class. Please create the java
source-code file with the name SnakeNN.java, where NN is the number of your seat (table). Your
code should be placed inside the run method. Examples of using Snake-methods are emphasized as
BOLD-Italic.
 Don’t forget to specify your own team name in the setName() method !!!!

/** Template program
 * Snake1.java
 * @see Snake.class
 *
 * The name of the class and file should be the same as the team name
 * (see setName method below)
 */

public class Snake1 extends Snake {

 /** Creates a new instance of Snake1. Constructor must be empty */
 public Snake1() {
 }

public void run() { // main control routine

 �int hx = getNextHeadX(); // get the next head position,
 �int hy = getNextHeadY(); // if it is free to move here

 int s[][] = getStones(); // stones handling is unimplemented here

 while(true) { // forever loop

 3

 waitNextTurn(); // synchronization (pause till next tick of timer)

 int r[][] = getRabbits(); // rabbits handling is unimplemented here

 double v=Math.random(); // random decision about the next step
 if(v > 0.7) turnLeft(); // to turn head left
 else
 if(v < 0.3) turnRight(); // to turn head right

 // to move forward just do nothing

 } // end of while loop

 }

 public String setName() {
 return “Snake 1”; // set team name here
 }
}

Snake API manual

Class Snake
java.lang.Object

 Snake
All Implemented Interfaces:

java.lang.Runnable

public abstract class Snake
extends java.lang.Object
implements java.lang.Runnable

Snake API.
This is the base class for a snake implementation. During the match, it is executed in a separate thread for each snake. The
user must inherit the Snake class for designing his/her own control program.

Field Summary

 Boolean ismoving
 Snake move indicatior.

Method Summary

 int[][] getBody ()
 Returns the 2D array with self body coordinates.

 int getDirection ()
 Returns the self head direction.

 int getNextHeadX ()
 Returns the X coordinate of the head in the next tick.
(However, if snake can't move, it will stay at current position)

 int getNextHeadY ()
 Returns the Y coordinate of the head in the next tick.
(However, if snake can't move, it will stay at current position)

 int[][] getOpponent ()
 Returns the 2D array with opponent body coordinates.

 int[][] getRabbits ()
 Returns the 2D array with coordinates of rabbits.

 4

 int[][] getStones ()
 Returns the 2D array with coordinates of stones.

 int getTime ()
 Returns current value of the time counter.

 int getScore ()
 Returns the number of rabbits collected by snake.

abstract void run ()
 This method should be implemented by the competitor.

abstract
 java.lang.String

setName ()
 This method is to specify a team name.

 void turnLeft ()
 This method turns the snake head to the left.
It is possible to have only one turn (left or right) per tick

 void turnRight ()
 This method turns the snake head to the right.
It is possible to have only one turn (left or right) per tick

 void waitNextTurn ()
 Wait until the next time step starts.
This method could be used for synchronization with the game timer.

Field Detail

ismoving
public volatile boolean ismoving

Snake move indicatior. True, if snake has moved last turn, false otherwise

Constructor Detail

Snake
public Snake()

Method Detail
waitNextTurn

public void waitNextTurn ()
Wait until the next time step starts.
This method could be used for synchronization with the game timer.

getTime

public int getTime ()
This method returns current value of the game timer in ticks. Zero means the last tick.
Returns:
integer timer value

 getScore
public int getScore ()

This method returns the number of rabbits collected by snake.
Returns:
integer score value

getOpponent

public final int[][] getOpponent ()
This method returns the 2D array with coordinates of the opponent body. The first dimension is the index of
coordinate (0 – horizontal coordinate X, 1 – vertical coordinate Y). The second dimension is a value of the
corresponding coordinate.

Example:

int[][] x = getOpponent();

 5

int hx = x[0][0]; int hy = x[1][0]; // coordinates of the snake head
int len = x[0].length; // length of the snake
int tx = x[0][len-1]; int ty = [1][len-1]; // coordinates of the snake tail

getStones

public final int[][] getStones ()

This method returns the 2D array with coordinates of stones. It has the same structure as for the getOpponent.
Example:

int stones[][] = getStones();
int lenstones = stones[0].length; // number of stones
int x= stones[0][i]; // X coord of the i-th stone
int y= stones[1][i]; // Y coord of the i-th stone

getRabbits

public final int[][] getRabbits ()

This method returns the 2D array with coordinates of rabbits. It has the same structure as for the getOpponent.
Example:

int rabbits[][] = getRabbits();
int lenrabbits = rabbits[0].length; // the total number of rabbits including collected ones
int x=rabbits[0][i]; // x coord of the i-th rabbit
int y=rabbits[1][i]; // y coord of the i-th rabbit

NOTES:

1. Rabbits may move occasionally, so be prepared.
2. Array returned by this method holds the total number of rabbits including collected ones.
3. Negative coordinate value means that the rabbit have been collected already.

run

public abstract void run ()
This method should be implemented by the competitor. It holds the main snake control routine. It must contain
"forever loop" which is to manipulate the snake in real-time.
Specified by:
run in interface java.lang.Runnable

setName

public abstract java.lang.String setName ()
This method is to specify a team name.
Please implement it as:

public String setName() {
 return "Team name"; // specify your team name here
}

turnLeft

public final void turnLeft ()
This method turns snake head to the left.
It is possible to have only one turn (left or right) per tick

turnRight

public final void turnRight ()
This method turns snake head to the right.
It is possible to have only one turn (left or right) per tick

getNextHeadX

public final int getNextHeadX ()
Returns the X coordinate of the head in the next turn.
(However, if snake can't move, it will stay at current position)

 6

getNextHeadY

public final int getNextHeadY ()
Returns the Y coordinate of the head in the next turn.
(However, if snake can't move, it will stay at current position)

getBody

public final int[][] getBody ()
Returns the 2D array with self body coordinates. 1st dimension is the index of coordinate (0 - X, 1 - Y).
2nd dimension is a value of corresponding coordinate.
Example:

int[][] x = getBody();

int hx = x[0][0]; int hy = [1][0]; // head coordinates
int len = x[0].length; // length of the snake
int tx = x[0][len-1]; int ty = [1][len-1]; // tail coordinates

getDirection

public final int getDirection ()
Returns self head direction of the snake.
// 0 - north, 1 - east, 2 - south, 3 - west

4. Design and Debugging

All files are collected in the java-challenge directory. There is the Snakes Hunt package provided for

design and debugging. The java-challenge folder includes also the following files needed:

1. SnakeHunt.jar – The main application module for design and debugging.

2. Snake.class – The base java class for snake implementation (see example).

3. Snake1.java, Snake2.java – Snake templates (examples).

4. Snake.html – Manual for Snake.class in javadoc format.

Important Remarks!

• The name of your class designed should be as SnakeNN, where NN – the number of your team

(number of your table). The Java-file name should be as SnakeNN.java.

• Type java –jar SnakeHunt.jar SnakeNN Snake1 in the command prompt to start the

execution of your SnakeNN program.

• It is only allowed to use the following Java packages: java.Math and java.util

• It is possible to use and design only inner classes. This means that your code submitted

should be a single Java-file.

• It is restricted to use potentially harmful and unsafe java methods (like accessing to operating

environment, file system, etc). Each round will run under a security manager.

 7

• You can use a standard input-output to debug your program. But these operations must be

removed when you submit your program for the tournament.

5. Submission Results & Tournament

Submission

 You should provide to the referee team with the SnakeNN.java file with the source code of
your snake controlling program. Please copy this file to the java-challenge-result directory. Your
code submitted should be a single Java-file. All input-output operations like System.out must be
removed!!

Tournament information

 All teams will be randomly distributed to their start positions in the tournament net. Each team
has to play 2 or 3 rounds with its opponent on each level of tournament to proceed to the next level of
the tournament. The 4-teams tournament example is shown in the picture.

 Team will be qualified for next round when:

• Cumulatively collected more rabbits than an opponent team, or
• Win 3rd round if there is a draw result after 2 rounds, or
• Randomly, after three rounds with the draw result.

 8

Credits

• Idea by Prof. Alexander Vazhenin, University of Aizu (vazhenin@u-aizu.ac.jp),
• Gameplay design and development by Vazhenin Dmitry, University of Aizu, Post-graduate

school (dmvazh@sparth.u-aizu.ac.jp).

Special thanks to Rentaro Yoshioka and Pierre-Alain Fayolle for testing.

