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Introduction to the Java Virtual Machine

Features of Java c©
• Object-Oriented

• Network

• Security

• Platform Independent

Java Virtual Machine

• Abstract instruction set architecture

• Placed between Java applications and underlying platform

• Stack-based architecture
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Implementation: Interpretation

switch(*bytecode){

case ILOAD:

STACK[SP + 1] = STACK[LV + *(bytecode + 1)];

SP = SP + 1;

..........

}

• A software written in native instructions to the platform reads
a Java application and interprets its bytecodes.

• Flexible and relatively inexpensive, thus widely adopted
(an interpreter is just another program on the platform).

• Slow : Checking a flag takes << 1 clock cycle in hardware but
several cycles in software.
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Just-In-Time Compilation

• Frequently executed methods (functions) are compiled to
native instructions.

• Works well for server side applications but may not be feasible
for client side applications (especially those running on
portable devices) because:

– Time and power consumption for compilation

– Expansion of program size

– Client side application may not be repeatedly executed and
cannot absorb above compilation overhead.
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Hardware Translation

Bytecode
Translator

Decode

Fetch

Java Bytecode

Native Machine code

From Instruction
Memory

• A small translation module
between the fetch and
decode stages in the pipeline
converts simple Java
bytecodes into native
instruction sequences.

• Complex bytecodes generate
branch instructions to
emulation routines.

• Small overhead (12K gates
in ARM Jazelle) and
minimum changes to
processor core.
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Hardware Translation: Example

Java Bytecode ARM Machine Code

b = a + b; ILOAD 1 LDR R0 [R7, #4]

ILOAD 2 LDR R1 [R7, #8]

IADD ADD R0 R1

ISTORE 2 STR R0 [R7, #8]

• R0 to R3 hold top four words of operand stack

• R7 points to Local Variable 0.

• In the above example, local variables a and b are numbered 1
and 2, respectively.

• Translation is on the single bytecode basis and causes frequent
memory accesses.
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Objectives

• Investigate the local variable access behavior of Java
applications.

• Add a small register file to the datapath of the hardware
translation-based JVM and use it as a local variable cache.

• Evaluate the effectiveness of the local variable cache by
changing its size.

• Options to further improve the effectiveness of the local
variable cache.
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Local Variable Cache

A small register file with two status bits (valid and modified) is
added to the datapath. Utilize existing control and data signals as
much as possible.

GPR
ALU

Bbus

Abus

Wbus

W_GPR

A_GPR

B_GPR

LV
Cache

W_LV

A_LV

B_LV
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ILOAD: Push the content of a local variable

    if(idx < LVC_SIZE){ index is within LVC
      if(v[idx]){ check valid bit
        MOV R[srp], LV[idx]; copy from LVC to t-o-s register
      }
      else{ entry not valid
        LDR R[srp], [R7, 4*idx]; load from memory to t-o-s register
        MOV LV[idx], R[srp]; also copy to LVC
        v[idx] = 1; set valid bit
      }
    }
    else{ index is outside LVC
      LDR R[srp], [R7, 4*idx]; load from memory to t-o-s- register
    } 
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ISTORE: Pop t-o-s word and write it back to a LV

if(idx < LVC_SIZE){ index is within LVC  
  MOV LV[idx], R[rsp];  copy from t-o-s regisger to LVC
  v[idx] = 1; m[idx] = 1; set valid and modified bits
}
else{ index is outside LVC
  STR R[rsp], [R7, 4*idx]; copy from t-o-s register to memory
}
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INVOKEVIRTUAL: Invoke another method

    for(i = 0; i < LVC_SIZE; i++){ For all LVC entries
      if(m[i]){ if the entry is modified
        STR LV[i], [R7, 4*i]; write back to memory
        m[i] = 0; clear modified bit
      }
      v[i] = 0; clear all valid bits
    }

IRETURN: Return from current method

    for(i = 0; i < LVC_SIZE; i++){
      v[i] = 0; m[i] = 0;
    } clear all valid and modified bits
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Performance Evaluation Environment

• JVM and Runtime Environment

– Kaffe 1.1.4, an open-source JVM/JRE.

– Compiled with interpretation-only option.

• Change the size of local variable cache from 4 to benchmark’s
maximum

• Performance metrics: hit ratio to the local variable cache
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Benchmark Programs (1)

• SciMark2.0 (FFT, LU, MonteCarlo SOR, SparseMatMult)

– Computation intensive kernels

– Long loop iterations per invocation

– Many local variables

• JOrbis

– Ogg Vorbis Audio Decoder in Java

– Similar characteristics to SciMark2.0
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Benchmark Programs (2)

• SAXON XSLT processor

– XML parser with four test documents from XSLTMark

– Most accesses are to lower index local variables

– Short execution per invocation

• Embedded CaffeineMark

– Composite results of Sieve, Loop, Logic, Method and Float

– Long execution per invocation

– Most accesses are to lower index local variables
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SciMark 2.0 Local Variable Access Distribution
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SAXON, JOrbis and Embedded CaffeineMark
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SciMark 2.0 Hit Ratio
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SAXON, JOrbis and Embedded CaffeineMark
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Parameter Passing in JVM

1. The caller method pushes parameters

2. The caller method invokes another method

3. These parameters appear as local variables for the callee
method

• In a hardware translation-based JVM, Step 1 is equal to
loading (up to four) t-o-s GPRs with parameters.

• By “swapping” t-o-s GPRs and local variables 0 to 3, the callee
method can directly access local variables from the local
variable cache.
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Parameter Passing in JVM (cont.)

Method
Invocation

Parameter 0
Parameter 1
Parameter 2
Parameter 3

R0
R1
R2
R3

LV0
LV1
LV2
LV3
LV4
LV5
LV6
LV7

R4
R5
R6
R7

GPRLV Cache

In Caller Method

R0
R1
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LV4
LV5
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R4
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In Callee Method

Parameter 0
Parameter 1
Parameter 2
Parameter 3
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Parameter Passing in JVM (cont.)

• This parameter passing method eliminates initial loading of the
local variable cache corresponding to the parameters.

• Effective for SAXON XSLT, but not for loop-oriented
benchmarks (SciMark 2.0, JOrbis, ECM).

Hit Ratio (%)

Test Case w/o w/ ∆

chart 66.5 74.7 8.2

decoy 61.5 70.1 8.6

encrypt 62.3 68.5 6.3

trend 39.3 52.6 13.3

Changes in SAXON XSLT Hit Ratio
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Optimizing Local Variable Mapping

• So far identity mapping from LV to LVC has been assumed
(i. e. local variables 0 to n− 1 are mapped to an n-entry LVC)

• Local variable access distributions draw very complex curves
(e. g. in FFT, accesses to local variables 10 to 16 are only 2%
of total).

• By storing most frequently accessed local variables, a small
local variable cache can perform close to a larger one.
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On-the-fly Access Profiling

Assumptions:

• Do not analyze the entire method (or even classfile)

• Just count the local variable access for each bytecode as it is
processed by the JVM

• Create a mapping from local variables to cache entries based on
the access statistics.

Effectiveness of profiling scheme is evaluated by the benchmarks
that access many local variables (FFT, SOR and JOrbis).
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Profiling Options

Opt1: • Count accesses for each method separately.

• LV mapping is updated on invocation/return and next
invocation is executed with the updated LV map.

• Infinite length of counters (no overflow)

• advantage: Captures local variable access behavior which
differs from method to method.

• drawback: Statistics for each method must be saved and
restored on each invocation and return.

Opt2: A single set of counters for all method.

Opt3: Finite length counter (default 8-bit), shift right all counters
by 1-bit on overflow.

Opt4: Identity mapping
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Hit Ratios and Profiling Options

Hit Ratios for a 16-entry Local Variable Cache
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For SOR, a single set of 8-bit counters sufficiently improve the hit
ratio.
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Hit Ratios and Profiling Options

Hit Ratios for a 16-entry Local Variable Cache
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FFT’s hit ratio is improved by 1.87 times, but Opt 2 is worse than
Opt 3 (need more investigation).
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Hit Ratios and Profiling Options

Hit Ratios for a 16-entry Local Variable Cache
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JOrbis suffers from both of finite length and single set of counters.
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JOrbis Hit Ratio with On-the-fly Profiling
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Summary

• Proposed to add a small register file to the datapath of a
hardware translation-based JVM to be used as the local
variable cache.

• With two exceptions, 60% to 98% of memory accesses for local
variables can be eliminated by a 16-entry local variable cache
for the various benchmark programs tested.

• For SAXON XSLT processor, parameter passing using LVC
was effective: 6.3% to 13.3% of accesses can be turned from
miss to hit.

• For applications with more than 16 local variables, on-the-fly
profiling by a set of counters was effective: 8-bit counters
improved the hit ratios by 4 to 87%.
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Future Work (or limitations of this work)

• Instruction folding using local variable cache (not possible for
most RISC processors if local variables are in memory).

• Design a prototype JVM with the local variable cache to
estimate the hardware resource overhead and operation speed.

• Performance evaluation including more complex bytecode
(software emulated code) with more various benchmark
programs.
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