
On the Design of the Local Variable Cache in a
Hardware Translation-Based Java Virtual

Machine

Hitoshi Oi

The University of Aizu

June 16, 2005

Languages, Compilers, and Tools for Embedded Systems (LCTES’05)

LCTES05 June 16, 2005

Outline

• Introduction to the Java Virtual Machine

• Implementation: Software Interpretation, Just-in-time
Compilation, Hardware Translation

• Local Variables Cache

• Base Design Performance

• On-the-fly Profiling of Local Variable Access

• Parameter Passing with Local Variable Cache

• Summary and Future Work

Hitoshi Oi 2

LCTES05 June 16, 2005

Introduction to the Java Virtual Machine

Features of Java c©
• Object-Oriented

• Network

• Security

• Platform Independent

Java Virtual Machine

• Abstract instruction set architecture

• Placed between Java applications and underlying platform

• Stack-based architecture

Hitoshi Oi 3

LCTES05 June 16, 2005

Implementation: Interpretation

switch(*bytecode){

case ILOAD:

STACK[SP + 1] = STACK[LV + *(bytecode + 1)];

SP = SP + 1;

..........

}

• A software written in native instructions to the platform reads
a Java application and interprets its bytecodes.

• Flexible and relatively inexpensive, thus widely adopted
(an interpreter is just another program on the platform).

• Slow : Checking a flag takes << 1 clock cycle in hardware but
several cycles in software.

Hitoshi Oi 4

LCTES05 June 16, 2005

Just-In-Time Compilation

• Frequently executed methods (functions) are compiled to
native instructions.

• Works well for server side applications but may not be feasible
for client side applications (especially those running on
portable devices) because:

– Time and power consumption for compilation

– Expansion of program size

– Client side application may not be repeatedly executed and
cannot absorb above compilation overhead.

Hitoshi Oi 5

LCTES05 June 16, 2005

Hardware Translation

Bytecode
Translator

Decode

Fetch

Java Bytecode

Native Machine code

From Instruction
Memory

• A small translation module
between the fetch and
decode stages in the pipeline
converts simple Java
bytecodes into native
instruction sequences.

• Complex bytecodes generate
branch instructions to
emulation routines.

• Small overhead (12K gates
in ARM Jazelle) and
minimum changes to
processor core.

Hitoshi Oi 6

LCTES05 June 16, 2005

Hardware Translation: Example

Java Bytecode ARM Machine Code

b = a + b; ILOAD 1 LDR R0 [R7, #4]

ILOAD 2 LDR R1 [R7, #8]

IADD ADD R0 R1

ISTORE 2 STR R0 [R7, #8]

• R0 to R3 hold top four words of operand stack

• R7 points to Local Variable 0.

• In the above example, local variables a and b are numbered 1
and 2, respectively.

• Translation is on the single bytecode basis and causes frequent
memory accesses.

Hitoshi Oi 7

LCTES05 June 16, 2005

Objectives

• Investigate the local variable access behavior of Java
applications.

• Add a small register file to the datapath of the hardware
translation-based JVM and use it as a local variable cache.

• Evaluate the effectiveness of the local variable cache by
changing its size.

• Options to further improve the effectiveness of the local
variable cache.

Hitoshi Oi 8

LCTES05 June 16, 2005

Local Variable Cache

A small register file with two status bits (valid and modified) is
added to the datapath. Utilize existing control and data signals as
much as possible.

GPR
ALU

Bbus

Abus

Wbus

W_GPR

A_GPR

B_GPR

LV
Cache

W_LV

A_LV

B_LV

Hitoshi Oi 9

LCTES05 June 16, 2005

ILOAD: Push the content of a local variable

 if(idx < LVC_SIZE){ index is within LVC
 if(v[idx]){ check valid bit
 MOV R[srp], LV[idx]; copy from LVC to t-o-s register
 }
 else{ entry not valid
 LDR R[srp], [R7, 4*idx]; load from memory to t-o-s register
 MOV LV[idx], R[srp]; also copy to LVC
 v[idx] = 1; set valid bit
 }
 }
 else{ index is outside LVC
 LDR R[srp], [R7, 4*idx]; load from memory to t-o-s- register
 }

Hitoshi Oi 10

LCTES05 June 16, 2005

ISTORE: Pop t-o-s word and write it back to a LV

if(idx < LVC_SIZE){ index is within LVC
 MOV LV[idx], R[rsp]; copy from t-o-s regisger to LVC
 v[idx] = 1; m[idx] = 1; set valid and modified bits
}
else{ index is outside LVC
 STR R[rsp], [R7, 4*idx]; copy from t-o-s register to memory
}

Hitoshi Oi 11

LCTES05 June 16, 2005

INVOKEVIRTUAL: Invoke another method

 for(i = 0; i < LVC_SIZE; i++){ For all LVC entries
 if(m[i]){ if the entry is modified
 STR LV[i], [R7, 4*i]; write back to memory
 m[i] = 0; clear modified bit
 }
 v[i] = 0; clear all valid bits
 }

IRETURN: Return from current method

 for(i = 0; i < LVC_SIZE; i++){
 v[i] = 0; m[i] = 0;
 } clear all valid and modified bits

Hitoshi Oi 12

LCTES05 June 16, 2005

Performance Evaluation Environment

• JVM and Runtime Environment

– Kaffe 1.1.4, an open-source JVM/JRE.

– Compiled with interpretation-only option.

• Change the size of local variable cache from 4 to benchmark’s
maximum

• Performance metrics: hit ratio to the local variable cache

Hitoshi Oi 13

LCTES05 June 16, 2005

Benchmark Programs (1)

• SciMark2.0 (FFT, LU, MonteCarlo SOR, SparseMatMult)

– Computation intensive kernels

– Long loop iterations per invocation

– Many local variables

• JOrbis

– Ogg Vorbis Audio Decoder in Java

– Similar characteristics to SciMark2.0

Hitoshi Oi 14

LCTES05 June 16, 2005

Benchmark Programs (2)

• SAXON XSLT processor

– XML parser with four test documents from XSLTMark

– Most accesses are to lower index local variables

– Short execution per invocation

• Embedded CaffeineMark

– Composite results of Sieve, Loop, Logic, Method and Float

– Long execution per invocation

– Most accesses are to lower index local variables

Hitoshi Oi 15

LCTES05 June 16, 2005

SciMark 2.0 Local Variable Access Distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 4 8 12 16 20 24 28

A
cc

es
s

P
er

 B
yt

ec
od

e
(w

or
d)

Local Variable Index

FFT
LU

MonteCarlo
SOR

SparseMatMult

Hitoshi Oi 16

LCTES05 June 16, 2005

SAXON, JOrbis and Embedded CaffeineMark

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 4 8 12 16 20 24

A
cc

es
s

P
er

 B
yt

ec
od

e
(w

or
d)

Local Variable Index

chart
decoy

encrypt
trend

JOrbis
Embedded CaffeineMark

Hitoshi Oi 17

LCTES05 June 16, 2005

SciMark 2.0 Hit Ratio

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 8 12 16 20 24 28 32

H
it

R
at

io
 (

%
)

Local Variable Cache Size (words)

FFT
LU

MonteCarlo
SOR

SparseMatMult

Hitoshi Oi 18

LCTES05 June 16, 2005

SAXON, JOrbis and Embedded CaffeineMark

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 8 12 16 20 24 28

H
it

R
at

io
 (

%
)

Local Variable Cache Size (words)

chart
decoy

encrypt
trend

JOrbis
Embedded CaffeineMark

Hitoshi Oi 19

LCTES05 June 16, 2005

Parameter Passing in JVM

1. The caller method pushes parameters

2. The caller method invokes another method

3. These parameters appear as local variables for the callee
method

• In a hardware translation-based JVM, Step 1 is equal to
loading (up to four) t-o-s GPRs with parameters.

• By “swapping” t-o-s GPRs and local variables 0 to 3, the callee
method can directly access local variables from the local
variable cache.

Hitoshi Oi 20

LCTES05 June 16, 2005

Parameter Passing in JVM (cont.)

Method
Invocation

Parameter 0
Parameter 1
Parameter 2
Parameter 3

R0
R1
R2
R3

LV0
LV1
LV2
LV3
LV4
LV5
LV6
LV7

R4
R5
R6
R7

GPRLV Cache

In Caller Method

R0
R1
R2
R3

LV4
LV5
LV6
LV7

R4
R5
R6
R7

GPRLV Cache

In Callee Method

Parameter 0
Parameter 1
Parameter 2
Parameter 3

Hitoshi Oi 21

LCTES05 June 16, 2005

Parameter Passing in JVM (cont.)

• This parameter passing method eliminates initial loading of the
local variable cache corresponding to the parameters.

• Effective for SAXON XSLT, but not for loop-oriented
benchmarks (SciMark 2.0, JOrbis, ECM).

Hit Ratio (%)

Test Case w/o w/ ∆

chart 66.5 74.7 8.2

decoy 61.5 70.1 8.6

encrypt 62.3 68.5 6.3

trend 39.3 52.6 13.3

Changes in SAXON XSLT Hit Ratio

Hitoshi Oi 22

LCTES05 June 16, 2005

Optimizing Local Variable Mapping

• So far identity mapping from LV to LVC has been assumed
(i. e. local variables 0 to n− 1 are mapped to an n-entry LVC)

• Local variable access distributions draw very complex curves
(e. g. in FFT, accesses to local variables 10 to 16 are only 2%
of total).

• By storing most frequently accessed local variables, a small
local variable cache can perform close to a larger one.

Hitoshi Oi 23

LCTES05 June 16, 2005

On-the-fly Access Profiling

Assumptions:

• Do not analyze the entire method (or even classfile)

• Just count the local variable access for each bytecode as it is
processed by the JVM

• Create a mapping from local variables to cache entries based on
the access statistics.

Effectiveness of profiling scheme is evaluated by the benchmarks
that access many local variables (FFT, SOR and JOrbis).

Hitoshi Oi 24

LCTES05 June 16, 2005

Profiling Options

Opt1: • Count accesses for each method separately.

• LV mapping is updated on invocation/return and next
invocation is executed with the updated LV map.

• Infinite length of counters (no overflow)

• advantage: Captures local variable access behavior which
differs from method to method.

• drawback: Statistics for each method must be saved and
restored on each invocation and return.

Opt2: A single set of counters for all method.

Opt3: Finite length counter (default 8-bit), shift right all counters
by 1-bit on overflow.

Opt4: Identity mapping

Hitoshi Oi 25

LCTES05 June 16, 2005

Hit Ratios and Profiling Options

Hit Ratios for a 16-entry Local Variable Cache

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

JOrbisFFTSOR

H
it

R
at

io
 (

%
)

Benchmark Programs

Opt 1
Opt 2
Opt 3
Opt 4

For SOR, a single set of 8-bit counters sufficiently improve the hit
ratio.

Hitoshi Oi 26

LCTES05 June 16, 2005

Hit Ratios and Profiling Options

Hit Ratios for a 16-entry Local Variable Cache

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

JOrbisFFTSOR

H
it

R
at

io
 (

%
)

Benchmark Programs

Opt 1
Opt 2
Opt 3
Opt 4

FFT’s hit ratio is improved by 1.87 times, but Opt 2 is worse than
Opt 3 (need more investigation).

Hitoshi Oi 27

LCTES05 June 16, 2005

Hit Ratios and Profiling Options

Hit Ratios for a 16-entry Local Variable Cache

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

JOrbisFFTSOR

H
it

R
at

io
 (

%
)

Benchmark Programs

Opt 1
Opt 2
Opt 3
Opt 4

JOrbis suffers from both of finite length and single set of counters.

Hitoshi Oi 28

LCTES05 June 16, 2005

JOrbis Hit Ratio with On-the-fly Profiling

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 8 12 16 20 24 28

H
it

R
at

io
 (

%
)

Local Variable Cache Size (words)

Opt 1
Opt 2

Opt 3 (8 bit)
(12 bit)
(16 bit)

Opt 4

Hitoshi Oi 29

LCTES05 June 16, 2005

Summary

• Proposed to add a small register file to the datapath of a
hardware translation-based JVM to be used as the local
variable cache.

• With two exceptions, 60% to 98% of memory accesses for local
variables can be eliminated by a 16-entry local variable cache
for the various benchmark programs tested.

• For SAXON XSLT processor, parameter passing using LVC
was effective: 6.3% to 13.3% of accesses can be turned from
miss to hit.

• For applications with more than 16 local variables, on-the-fly
profiling by a set of counters was effective: 8-bit counters
improved the hit ratios by 4 to 87%.

Hitoshi Oi 30

LCTES05 June 16, 2005

Future Work (or limitations of this work)

• Instruction folding using local variable cache (not possible for
most RISC processors if local variables are in memory).

• Design a prototype JVM with the local variable cache to
estimate the hardware resource overhead and operation speed.

• Performance evaluation including more complex bytecode
(software emulated code) with more various benchmark
programs.

Hitoshi Oi 31

