FUO5 Computer Architecture

14. Parallel Processors
(5T atEy)

Naohito Nakasato

E-mail: nakasato@u-aizu.ac.jp

Introduction

= Goal: connecting multiple computers
to get higher performance

= Multiprocessors
= Scalability, availability, power efficiency

= (process-level)
= High throughput for independent jobs
= Parallel processing program
= Single program run on multiple processors

= Multicore microprocessors
= Chips with multiple processors (cores)

Hardware and Software

= Hardware
= Serial: e.g., Pentium 4
= Parallel: e.g., quad-core Xeon €5345
= Software
= Sequential: e.g., matrix multiplication
= Concurrent: e.g., operating system
= Sequential/concurrent software can run on
serial/parallel hardware

= Challenge: making effective use of parallel
hardware

Parallel Programming

= Parallel software is the problem
= Need to get significant performance
improvement
= Otherwise, just use a faster uniprocessor,
since it's easier!
= Difficulties
= Partitioning
= Coordination
= Communications overhead

Amdahl’s Law

= Sequential part can limit speedup
= Example: 100 processors, 90x speedup?
« T =T /100 + T,

1
)+Fp

parallelizable equential

= Speedup = 100 =90

aralleliable

(1-F

paralleliable

= Solving: |:parallelizable =0.999

= Need sequential part to be 0.1% of original
time

Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix
sum

= Speed up from 10 to 100 processors
Single processor: Time = (10 + 100) x t_g;
10 processors

= Time=10x1t_,,+100/10 x t_,, =20 x t_g,

= Speedup = 110/20 = 5.5 (55% of potential)
100 processors

= Time=10x1t_,,+ 100/100 x t 4, = 11 x t_,4

= Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across
Processors

Scaling Example (cont)

What if matrix size is 100 x 1007?
Single processor: Time = (10 + 10000) x t_ 4
10 processors

= Time =10 xt_4, + 10000/10 x t_4q = 1010 x t_,4
= Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
= Time =10 xt_,, + 10000/100 x t_,, = 110 x t_,
= Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced

Strong vs Weak Scaling

= Strong scaling: problem size fixed
= As In example

= Weak scaling: problem size proportional to
number of processors
= 10 processors, 10 x 10 matrix
« Time =20 x t_y4
= 100 processors, 32 x 32 matrix
« Time = 10 x t_y, + 1000/100 % t 4, =20 x t g,
= Constant performance in this example

Instruction and Data Streams

= An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

SPMD: Single Program Multiple Data

A parallel program on a MIMD computer
Conditional code for different processors

Example: DAXPY (Y = a x X +Y)

= Conventional MIPS code

1.d $f0,a($sp) *Toad scalar a
addiu r4,%$s0,#512 ;upper bound of what to load
Toop: { load x(1)
a x x(1)
; 1load y(1)

;a x x(1) + y(i)
;store into y(1)

. increment index to x
addiu $s1,$s1,#8 ;increment index to y
subu $t0,r4,$s0 » compute bound

bne $t0, $zero, loop ;check if done

= Vector MIPS code

1.d $f0,a($sp) : load scalar a

Tv $v1,0($s0) :load vector X

mulvs.d $v2,%v1,$f0 ;vector-scalar multiply
Tv $v3,0(%$s1) :load vector y

addv.d $v4,%v2,%v3 ;add y to product

SV $v4,0($s1) *store the result

10

Vector Processors

Highly pipelined function units

Stream data from/to vector registers to units
= Data collected from memory into registers
= Results stored from registers to memory

Example: Vector extension to MIPS
= 32 x 64-element registers (64-bit elements)

= Vector instructions
= 1V, sv:load/store vector
= addv.d: add vectors of double
« addvs.d: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth

11

Vector vs. Scalar

= Vector architectures and compilers
= Simplify data-parallel programming

= Explicit statement of absence of loop-carried
dependences

« Reduced checking in hardware

= Regular access patterns benefit from
interleaved and burst memory

= Avoid control hazards by avoiding loops

= More general than ad-hoc media
extensions (such as MMX, SSE)

= Better match with compiler technology

12

SIMD

= Operate elementwise on vectors of data
= E.g., MMX and SSE instructions in x86

=« Multiple data elements in 128-bit wide registers

= All processors execute the same
instruction at the same time

= Each with different data address, etc.
= Simplifies synchronization
s Reduced instruction control hardware

= Works best for highly data-parallel
applications

13

Vector vs. Multimedia Extensions

= Vector instructions have a variable vector width,
multimedia extensions have a fixed width

= Vector instructions support strided access,
multimedia extensions do not

= Vector units can be combination of plpelmed and
arrayed functional units: ot b

-
A[9] [9] FP add FP add FP add FP add
pipe 0 pipe 1 pipe 2 pipe 3

=
]
E
2

=
|
2
o |
=
—==
s
=
s

Al6] B[6] Vi Vector Veci Vector
A[5] B[5] gist registers: egist registers:
1 — lement elements lement: elements
Al4] B[4] 0,4,8 1,509, .. 6,1 N b P
A[3] B[3]

Z =
=
| =
= |
> | >
FEE
o | @
4—33
T le— | = | =
RS2 -]
«— =
e
o
E
¢ >
P
o
P
=
2 Sog
o 3 >2a 5
== 320
= ®3 g8
.)
IR
-
2
3
_‘—
-
24
=
M_
-
2
3
m—

14

Multithreading

= Performing multiple threads of execution in
parallel
= Replicate registers, PC, etc.
= Fast switching between threads

= Fine-grain multithreading
= Switch threads after each cycle
= |nterleave instruction execution
= |f one thread stalls, others are executed

= Coarse-grain multithreading

= Only switch on long stall (e.g., L2-cache miss)

= Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

15

Simultaneous Multithreading

= In multiple-issue dynamically scheduled
processor

= Schedule instructions from multiple threads

= Instructions from independent threads execute
when function units are available

= Within threads, dependencies handled by
scheduling and register renaming

= Example: Intel Pentium-4 HT

= Two threads: duplicated registers, shared
function units and caches

16

Multithreading Example

Issue slots ——
Thread A Thread B

Time

Issue slots —
Coarse MT Fine MT
Time HIH Nl
B HEN
HENR HEN
BB

Thread C Thread D

NN N
R E
ENNE: ENEE

17

Future of Multithreading

= Wil it survive? In what form?

= Power considerations = simplified
microarchitectures

= Simpler forms of multithreading

= lolerating cache-miss latency
= [hread switch may be most effective

= Multiple simple cores might share
resources more effectively

18

Shared Memory

= SMP: shared memory multiprocessor

= Hardware provides single physical
address space for all processors

= Synchronize shared variables using locks

= Memory access time
=« UMA (uniform) vs. NUMA (nonuniform)

Processor Processor . Processor

Interconnection Network
A

Memory IO

Example: Sum Reduction
= Sum 100,000 numbers on 100 processor UMA

= Each processor has ID: 0 < Pn <99

= Partition 1000 numbers per processor

= |nitial summation on each processor

sum[Pn] =
for (1 = 1000 Pn;
1 < 1000* (Pn+1); 1 =1+ 1)
sum[Pn] = sum[Pn] + A[1];

= Now need to add these partial sums

= Reduction: divide and conquer

= Half the processors add pairs, then quarter, ...

= Need to synchronize between reduction steps

20

Example: Sum Reduction

0
~
maﬁ=1)2R:
N
(half = 2)[o][1][2]]3
half = 100;
repeat (half = 4y [o][1][2][3][4][5]6][7
synch();

it (half%2 !'= 0 && Pn == 0)
sum[0] = sum[0] + sum[half-1];
/% Conditional sum needed when half is odd;
ProcessorQ gets missing element */
half = half/2; /* dividing 1ine on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until Chalf == 1);

21

History of GPUs

= Early video cards

= Frame buffer memory with address generation for
video output

= 3D graphics processing
= Originally high-end computers (e.g., SGI)
= Moore’s Law = lower cost, higher density
= 3D graphics cards for PCs and game consoles

= Graphics Processing Units
= Processors oriented to 3D graphics tasks

= Vertex/pixel processing, shading, texture mapping,
rasterization

22

Graphics in the System

Intel
CPU

x16 PCI-Express Link

A
Front Side Bus
Y

%16 PCI-Express Link

AMD
CPU
CPU
core
internal bus | 128-bit
667 MT/s
North | DDR2
Bridge Memory

A

<> Chipset

N North _ | DDR2
display GPU o Brldge g Memory
x4 PCI-Express Link 4 128-bit
derivative ¢ 667 MT/s
nDI 1
South
CPU Bridge
i _
! Front Side Bus
North - Memo
Bridge i
1
{ roiBus
y 3
Y Y
South VGA | Framebuffer | - GPU
Bridge Controller Memory display
A
i Y
Y Y) Y
VGA GPU

Y HyperTransport 1.03

23

GPU Architectures

= Processing is highly data-parallel
= GPUs are highly multithreaded

= Use thread switching to hide memory latency
= Less reliance on multi-level caches

= Graphics memory is wide and high-bandwidth
= [Trend toward general purpose GPUs

= Heterogeneous CPU/GPU systems

= CPU for sequential code, GPU for parallel code

= Programming languages/APls
= DirectX, OpenGL

= C for Graphics (Cg), High Level Shader Language
(HLSL)

= Compute Unified Device Architecture (CUDA)

24

System Memory

[Hosti

GPU

Example: NVIDIA Tesla

Streaming
multiprocessor

Input Assembler |

Viewport/Clip/
Setup/Raster/
ZCull

Video Processors

Pixel Work Compute Work
Distribution Distribution
| |
|]] |
TPC Ml TPC TPC I TPC (I I
[|| ||]| |l]| |l]
SM SM SM SM SM SM SM SM
]]] I — | — | |
]]] 1 | |
I | — 1
53 5 15 5 A 5 5 5 i 5 5 i s i 52 S 5 3 S [s7]sP)
5 3 53 53 S R W R SR S5 1 S5 S S 1S53 23 S SRS ER[ERERIES [sFIfse]
553 53 53 53 A 5 5 5 i a5 5 s = 52 = = =z = [s7]sP)
5 S 3 53 1 5 5 5 W 53 i 5 5 [0 53 S 55 R [ER R SR [sIfse]
0B EEE0) (B0 EE BB [EE EE (EE|EE 08
o = e]| (EE EE) == == =

|I-Cache
MT Issue

C-Cache

BRI HE R
EIEIEIE e

Texture Unit

Texture Unit

Texture Unit Texture Unit

Tex L1 | Tex L1 |

:
[

Tex L1 Tex L1 I

SFU || SFU

e

Interconnection Network

[Rop || 12 | [Rop|| 2 | [Rop][2 | [Rop|| L2 | | Displaymntertace |
1 I | | | | I I I

Shared
Memory

DRAM

DRAM DRAM

8 x Streaming
processors

25

Example: NVIDIA Tesla

= Streaming Processors
= Single-precision FP and integer units
= Each SP is fine-grained multithreaded

= Warp: group of 32 threads

= Executed in parallel,
SIMD style

= 8 SPs
x 4 clock cycles

= Hardware contexts
for 24 warps

= Reqisters, PCs, ...

Processors ——

UltraSPARC T2 Tesla Multiprocessor
[l Threado
[l Threadt
Bl Thread2
[l Threads

Warp0

Hardware
Supported [l Thread4

Threads . Thread5

l [l Threads

[l Thread7

Warp1

Classifying GPUs

= Don't fit nicely into SIMD/MIMD model

= Conditional execution in a thread allows an
illusion of MIMD

= But with performance degredation
= Need to write general purpose code with care

Static: Discovered
at Compile Time

Dynamic: Discovered
at Runtime

Parallelism

Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector Tesla Multiprocessor

27

GPU Memory Structures

CUDA Thread

-+—| Per-CUDA Thread Private Memory

Thread block

Per-Block
Local Memory

Grid 0 Sequence

CfLoteterer CLeLecLotet feetetotes
o 3 3 o] FEREEEEEE]

e Cor T TECCECECer
FHE | | R || i
PRPPPPRPFPR PPRPPPPRPPF FPRPPFPPPFR

— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1

e e e e e B
LL L e Ly Lot CLELE el

s

AF A3 ¥] a3 33333 ¥) »]
€L (4 C L

0 e 0 B
[(oo CECell [

) FEFFFR] FEFFFF) >)]
LLC C_‘C_’(_.‘ C_‘(_’g Ll Lol C_“C_,
PYPPPPPPPPY FRFFPFPYPR || FRPPRRPYRRY

Putting GPUs into Perspective
__ Featre | Multicorewith SIMD | _GPU__

SIMD processors
SIMD lanes/processor

Multithreading hardware support for
SIMD threads

Typical ratio of single precision to
double-precision performance

Largest cache size

Size of memory address

Size of main memory

Memory protection at level of page
Demand paging

Integrated scalar processor/SIMD
processor

Cache coherent

4108
2to 4
2to 4

2:1

8 MB
64-bit
8 GB to 256 GB
Yes
Yes

Yes

Yes

8to 16
8to 16
16 to 32

2:1

0.75 MB
64-bit
4 GB to 6 GB
Yes
No
No

No

29

Guide to GPU Terms
:*m:r.,..,.

Official CUDA/

Vectorizable Vectorizabls Loop A wectorizable loop, sxecuted on the GPL, mads

o Lep up of one or mors Thresd Blocks bodies of

5 vectorized loop) that can execute in parallel.

]

i Body of Body of a Thr=ad Block A vectorized loop exscut=d on a multithreaded

= Vectorized Loop | (S p-Mined) SIMD Procsssor, made up of one or mons threads

- Viectonized Loop of SIMD instuctions. They can communicate via

E Leszal Mermiory.

? Sequence of One iteration of CUDA Thread Awertical cut of a thread of SIMD instuctions
SIMD Lane a Scalar Loop camesponding to one slement sxecuted by one
(Operations SIMD Lane. Result is stored depending on mask

ard predicats redister.

- A Thr=ad of Thread of Wector Warp A traditional thread, but it contains just SIMD

I SIMD Instructions instructions that are sxscuted on a multithreadsd

= Iretructions SIMD Processor. Results stored deperding on &

z perslement mask,

E SIMD Vector Instruction | PTX Instruction A zingls SIMD instruction sxscuted across SIMD
| restruction Lan=s.

Multithresded {Multith readed) Streaming A multithreaded SIMD Procsssor sxscutes
SIM0 Vector Procsssor Multiprocessor threads of SIMD instructions, ndspendent of
Procsssor ather SIMD Processons.

Thread Black Sealar Processor Giga Thread Azsigns multiple Thread Blocks (kediss of

g Scheduler Engine vectarized loop) to multithreadsd SIMD

5 Processors.

2 SIMD Thread Thread scheduler | Warp Scheduler Harchware unit that schedules and issues threads

o Scheduler in & Multithreaded of SIMD instuctions when they ars ready to

- CPL execite; includes & scorsbaand to track SIMD

g Thread emscition.

o SIMD Lane Vector lane Thread Pracessor A SIMD Lare sxscutes the epsrations in & thread
af SIMD instructions on a sindls elemsnt. Results
stored depending on mask.

GPU Mearmory Main Mermaory Global Memaory DRAM rremony accessible by all mukithreaded

L SIMD Procsssars ina GPL.

:

3 Lezal Mamony Lezal Mamory Sharsd Memary Fast local SRAM for ane multithreaded SIMD

E‘ Processor, unavailabls to other SIMD Precessors.

&

= SIMD Lane Viector Lans Thread Pracessor Redisters in a single SIMD Lans allecated across
Registers R=gisters Redisters a full thread block body of vectorized kop).

30

Message Passing
= Each processor has private physical
address space

= Hardware sends/receives messages
between processors

Processor Processor ... Processor
A A A
k 4 L J L J
Cache Cache - Cache
A A A
k J
Memory Memory - Memory
A A A
A 4 k | Y
Interconnection Network

Sum Reduction (Again)

= Sum 100,000 on 100 processors

= First distribute 100 numbers to each
= he do partial sums
sum = 0;
for (1 = 0; 1<1000; 1 =1 + 1)
sum = sum + AN[1];
= Reduction

= Half the processors send, other half receive
and add

= The quarter send, quarter receive and add, ...

33

Sum Reduction (Again)

= Given send() and receive() operations

Timit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive
dividing line */
if (Pn >= half & Pn < 1imit)
send(Pn - half, sum);
if (Pn < (1imit/2))
sum = sum + receive();
Timit = half; /* upper 1imit of senders */
until (half == 1); /* exit with final sum */

= Send/receive also provide synchronization
= Assumes send/receive take similar time to addition

34

Grid Computing

= Separate computers interconnected by
long-haul networks

= E.g., Internet connections
= Work units farmed out, results sent back

= Can make use of idle time on PCs
= E.g., SETI@home, World Community Grid

35

Interconnection Networks

= Network topologies
= Arrangements of processors, switches, and links

R R S R R S S

Bus Ring

L"\ N N N

T T [1= T

Tt Ta

Tt a

(|

Jw U J“ﬁ N-cube (N = 3)

2D Mesh

Fully connected

36

Multistage Networks

!
— [Py >
A 4 4 4 4 A 4 & _ — 1
nbakakalababak<Ls N Rammme
St eleleleelel P —
BN o e ST g -
BNk atalabalalalals : —
Jr ey e -
Rttt e Py
St oo
RatalakaEaRalakals
a. Crossbar b. Omega network
f
A
A TT—‘ c
B \abhd D

c. Omega network switch box

37

Network Characteristics

= Performance
= Latency per message (unloaded network)

= Throughput
= Link bandwidth
= Jotal network bandwidth
= Bisection bandwidth

= Congestion delays (depending on traffic)
s Cost
= Power
= Routability in silicon

38

Parallel Benchmarks

Linpack: matrix linear algebra
SPECrate: parallel run of SPEC CPU programs

= Job-level parallelism
SPLASH: Stanford Parallel Applications for
Shared Memory

= Mix of kernels and applications, strong scaling

NAS (NASA Advanced Supercomputing) suite
= computational fluid dynamics kernels
PARSEC (Princeton Application Repository for
Shared Memory Computers) suite

= Multithreaded applications using Pthreads and
OpenMP

39

Concluding Remarks

Goal: higher performance by using multiple
Processors

Difficulties

= Developing parallel software

= Devising appropriate architectures

SaaS importance is growing and clusters are a
good match

Performance per dollar and performance per
Joule drive both mobile and WSC

SIMD and vector operations match multimedia
applications and are easy to program

40

