
14. Parallel Processors
(並列プロセッサ)

FU05 Computer Architecture

Naohito Nakasato

E-mail: nakasato@u-aizu.ac.jp

Lectures of this course are adopted from the slides of the Book ‘’Computer Organization and Design - The Hardware/Software Interface, 5th Ed’’ by David. A. Patterson & John L. Hennessy

Introduction

◼ Goal: connecting multiple computers
to get higher performance

◼ Multiprocessors

◼ Scalability, availability, power efficiency

◼ Task-level (process-level) parallelism

◼ High throughput for independent jobs

◼ Parallel processing program

◼ Single program run on multiple processors

◼ Multicore microprocessors

◼ Chips with multiple processors (cores)

2

Hardware and Software

◼ Hardware

◼ Serial: e.g., Pentium 4

◼ Parallel: e.g., quad-core Xeon e5345

◼ Software

◼ Sequential: e.g., matrix multiplication

◼ Concurrent: e.g., operating system

◼ Sequential/concurrent software can run on
serial/parallel hardware

◼ Challenge: making effective use of parallel
hardware

3

Parallel Programming

◼ Parallel software is the problem

◼ Need to get significant performance

improvement

◼ Otherwise, just use a faster uniprocessor,

since it’s easier!

◼ Difficulties

◼ Partitioning

◼ Coordination

◼ Communications overhead

4

Amdahl’s Law

◼ Sequential part can limit speedup

◼ Example: 100 processors, 90× speedup?

◼ Tnew = Tparallelizable/100 + Tsequential

◼

◼ Solving: Fparallelizable = 0.999

◼ Need sequential part to be 0.1% of original

time

90
/100F)F(1

1
Speedup

ableparallel izableparallel iz

=
+−

=

5

Scaling Example

◼ Workload: sum of 10 scalars, and 10 × 10 matrix
sum
◼ Speed up from 10 to 100 processors

◼ Single processor: Time = (10 + 100) × tadd

◼ 10 processors
◼ Time = 10 × tadd + 100/10 × tadd = 20 × tadd

◼ Speedup = 110/20 = 5.5 (55% of potential)

◼ 100 processors
◼ Time = 10 × tadd + 100/100 × tadd = 11 × tadd

◼ Speedup = 110/11 = 10 (10% of potential)

◼ Assumes load can be balanced across
processors

6

Scaling Example (cont)

◼ What if matrix size is 100 × 100?

◼ Single processor: Time = (10 + 10000) × tadd

◼ 10 processors

◼ Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

◼ Speedup = 10010/1010 = 9.9 (99% of potential)

◼ 100 processors

◼ Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

◼ Speedup = 10010/110 = 91 (91% of potential)

◼ Assuming load balanced

7

Strong vs Weak Scaling

◼ Strong scaling: problem size fixed

◼ As in example

◼ Weak scaling: problem size proportional to

number of processors

◼ 10 processors, 10 × 10 matrix

◼ Time = 20 × tadd

◼ 100 processors, 32 × 32 matrix

◼ Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

◼ Constant performance in this example

8

Instruction and Data Streams

◼ An alternate classification

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

◼ SPMD: Single Program Multiple Data

◼ A parallel program on a MIMD computer

◼ Conditional code for different processors

9

Example: DAXPY (Y = a × X + Y)

◼ Conventional MIPS code

l.d $f0,a($sp) ;load scalar a
addiu r4,$s0,#512 ;upper bound of what to load

loop: l.d $f2,0($s0) ;load x(i)
mul.d $f2,$f2,$f0 ;a × x(i)
l.d $f4,0($s1) ;load y(i)
add.d $f4,$f4,$f2 ;a × x(i) + y(i)
s.d $f4,0($s1) ;store into y(i)
addiu $s0,$s0,#8 ;increment index to x
addiu $s1,$s1,#8 ;increment index to y
subu $t0,r4,$s0 ;compute bound
bne $t0,$zero,loop ;check if done

◼ Vector MIPS code

l.d $f0,a($sp) ;load scalar a
lv $v1,0($s0) ;load vector x
mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
lv $v3,0($s1) ;load vector y
addv.d $v4,$v2,$v3 ;add y to product
sv $v4,0($s1) ;store the result

10

Vector Processors

◼ Highly pipelined function units

◼ Stream data from/to vector registers to units

◼ Data collected from memory into registers

◼ Results stored from registers to memory

◼ Example: Vector extension to MIPS

◼ 32 × 64-element registers (64-bit elements)

◼ Vector instructions

◼ lv, sv: load/store vector

◼ addv.d: add vectors of double

◼ addvs.d: add scalar to each element of vector of double

◼ Significantly reduces instruction-fetch bandwidth

11

Vector vs. Scalar

◼ Vector architectures and compilers

◼ Simplify data-parallel programming

◼ Explicit statement of absence of loop-carried
dependences
◼ Reduced checking in hardware

◼ Regular access patterns benefit from
interleaved and burst memory

◼ Avoid control hazards by avoiding loops

◼ More general than ad-hoc media
extensions (such as MMX, SSE)

◼ Better match with compiler technology

12

SIMD

◼ Operate elementwise on vectors of data

◼ E.g., MMX and SSE instructions in x86
◼ Multiple data elements in 128-bit wide registers

◼ All processors execute the same
instruction at the same time

◼ Each with different data address, etc.

◼ Simplifies synchronization

◼ Reduced instruction control hardware

◼ Works best for highly data-parallel
applications

13

Vector vs. Multimedia Extensions

◼ Vector instructions have a variable vector width,

multimedia extensions have a fixed width

◼ Vector instructions support strided access,

multimedia extensions do not

◼ Vector units can be combination of pipelined and

arrayed functional units:

14

Multithreading

◼ Performing multiple threads of execution in
parallel
◼ Replicate registers, PC, etc.

◼ Fast switching between threads

◼ Fine-grain multithreading
◼ Switch threads after each cycle

◼ Interleave instruction execution

◼ If one thread stalls, others are executed

◼ Coarse-grain multithreading
◼ Only switch on long stall (e.g., L2-cache miss)

◼ Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

15

Simultaneous Multithreading

◼ In multiple-issue dynamically scheduled
processor

◼ Schedule instructions from multiple threads

◼ Instructions from independent threads execute
when function units are available

◼ Within threads, dependencies handled by
scheduling and register renaming

◼ Example: Intel Pentium-4 HT

◼ Two threads: duplicated registers, shared
function units and caches

16

Multithreading Example

17

Future of Multithreading

◼ Will it survive? In what form?

◼ Power considerations  simplified

microarchitectures

◼ Simpler forms of multithreading

◼ Tolerating cache-miss latency

◼ Thread switch may be most effective

◼ Multiple simple cores might share

resources more effectively

18

Shared Memory

◼ SMP: shared memory multiprocessor

◼ Hardware provides single physical

address space for all processors

◼ Synchronize shared variables using locks

◼ Memory access time

◼ UMA (uniform) vs. NUMA (nonuniform)

19

Example: Sum Reduction

◼ Sum 100,000 numbers on 100 processor UMA
◼ Each processor has ID: 0 ≤ Pn ≤ 99

◼ Partition 1000 numbers per processor

◼ Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

◼ Now need to add these partial sums
◼ Reduction: divide and conquer

◼ Half the processors add pairs, then quarter, …

◼ Need to synchronize between reduction steps

20

Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

21

History of GPUs

◼ Early video cards

◼ Frame buffer memory with address generation for

video output

◼ 3D graphics processing

◼ Originally high-end computers (e.g., SGI)

◼ Moore’s Law  lower cost, higher density

◼ 3D graphics cards for PCs and game consoles

◼ Graphics Processing Units

◼ Processors oriented to 3D graphics tasks

◼ Vertex/pixel processing, shading, texture mapping,

rasterization

22

Graphics in the System

23

GPU Architectures

◼ Processing is highly data-parallel
◼ GPUs are highly multithreaded

◼ Use thread switching to hide memory latency
◼ Less reliance on multi-level caches

◼ Graphics memory is wide and high-bandwidth

◼ Trend toward general purpose GPUs
◼ Heterogeneous CPU/GPU systems

◼ CPU for sequential code, GPU for parallel code

◼ Programming languages/APIs
◼ DirectX, OpenGL

◼ C for Graphics (Cg), High Level Shader Language
(HLSL)

◼ Compute Unified Device Architecture (CUDA)

24

Example: NVIDIA Tesla

Streaming

multiprocessor

8 × Streaming

processors

25

Example: NVIDIA Tesla

◼ Streaming Processors

◼ Single-precision FP and integer units

◼ Each SP is fine-grained multithreaded

◼ Warp: group of 32 threads

◼ Executed in parallel,
SIMD style
◼ 8 SPs

× 4 clock cycles

◼ Hardware contexts
for 24 warps
◼ Registers, PCs, …

26

Classifying GPUs

◼ Don’t fit nicely into SIMD/MIMD model

◼ Conditional execution in a thread allows an
illusion of MIMD
◼ But with performance degredation

◼ Need to write general purpose code with care

Static: Discovered

at Compile Time

Dynamic: Discovered

at Runtime

Instruction-Level

Parallelism

VLIW Superscalar

Data-Level

Parallelism

SIMD or Vector Tesla Multiprocessor

27

GPU Memory Structures

28

Putting GPUs into Perspective

29

Feature Multicore with SIMD GPU

SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD

processor

Yes No

Cache coherent Yes No

Guide to GPU Terms

30

Message Passing

◼ Each processor has private physical
address space

◼ Hardware sends/receives messages
between processors

31

Sum Reduction (Again)

◼ Sum 100,000 on 100 processors

◼ First distribute 100 numbers to each

◼ The do partial sums

sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + AN[i];

◼ Reduction

◼ Half the processors send, other half receive

and add

◼ The quarter send, quarter receive and add, …

33

Sum Reduction (Again)

◼ Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive

dividing line */
if (Pn >= half && Pn < limit)
send(Pn - half, sum);

if (Pn < (limit/2))
sum = sum + receive();

limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

◼ Send/receive also provide synchronization

◼ Assumes send/receive take similar time to addition

34

Grid Computing

◼ Separate computers interconnected by

long-haul networks

◼ E.g., Internet connections

◼ Work units farmed out, results sent back

◼ Can make use of idle time on PCs

◼ E.g., SETI@home, World Community Grid

35

Interconnection Networks

◼ Network topologies

◼ Arrangements of processors, switches, and links

Bus Ring

2D Mesh

N-cube (N = 3)

Fully connected

36

Multistage Networks

37

Network Characteristics

◼ Performance

◼ Latency per message (unloaded network)

◼ Throughput
◼ Link bandwidth

◼ Total network bandwidth

◼ Bisection bandwidth

◼ Congestion delays (depending on traffic)

◼ Cost

◼ Power

◼ Routability in silicon

38

Parallel Benchmarks

◼ Linpack: matrix linear algebra

◼ SPECrate: parallel run of SPEC CPU programs
◼ Job-level parallelism

◼ SPLASH: Stanford Parallel Applications for
Shared Memory
◼ Mix of kernels and applications, strong scaling

◼ NAS (NASA Advanced Supercomputing) suite
◼ computational fluid dynamics kernels

◼ PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
◼ Multithreaded applications using Pthreads and

OpenMP

39

Concluding Remarks

◼ Goal: higher performance by using multiple

processors

◼ Difficulties

◼ Developing parallel software

◼ Devising appropriate architectures

◼ SaaS importance is growing and clusters are a

good match

◼ Performance per dollar and performance per

Joule drive both mobile and WSC

◼ SIMD and vector operations match multimedia

applications and are easy to program

40

