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Virtual Memory

仮想メモリ
 Use main memory as a “cache” for 

secondary (disk) storage
 Managed jointly by CPU hardware and the 

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space 

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to 
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault



Virtual Addressing
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Physical Addressing

 Used in “simple” systems like embedded 

microcontrollers in devices like cars, 

elevators, and digital picture frames
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Virtual Addressing

 Used in all modern servers, desktops, and 

laptops

 One of the great ideas in computer science
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Why Virtual Memory (VM)?

 Uses main memory efficiently
 Use DRAM as a cache for the parts of a virtual 

address space

 Simplifies memory management
 Each process gets the same uniform linear address 

space

 Isolates address spaces
 One process can’t interfere with another’s 

memory

 User program cannot access privileged kernel 
information 6
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Address Translation

 Fixed-size pages (e.g., 4K)
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Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual 
page number

 Page table register in CPU points to page 
table in physical memory

 If page is present in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on 
disk
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Translation Using a Page Table
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Mapping Pages to Storage



Page Hit

 Page hit: reference to VM word that is in physical 

memory (DRAM cache hit)
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Page Fault
 If there is a reference to a page, first reference 

to that page will trap to operating system:

page fault

1. Operating system looks at another table to 
decide:
 Invalid reference  abort

 Just not in memory

2. Get empty frame

3. Swap page into frame

4. Reset tables

5. Set validation bit = v

6. Restart the instruction that caused the page 
fault 12



Page Fault

 Page fault: reference to VM word that is not in 

physical memory (DRAM cache miss)
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Handling Page Fault

 Page miss causes page fault (an exception)
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Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

15



Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!
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Summary of Handling a Page Fault
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Page Fault Penalty

 On page fault, the page must be fetched 

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms



Locality to the Rescue Again!
 Virtual memory works because of locality

 At any point in time, programs tend to access a 
set of active virtual pages called the working set
 Programs with better temporal locality will have 

smaller working sets

 If (working set size < main memory size) 
 Good performance for one process after compulsory 

misses

 If (SUM(working set sizes) > main memory size ) 
 Thrashing: Performance meltdown where pages are 

swapped (copied) in and out continuously
20



Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page 

replacement algorithm to select a victim 

frame

Bring  the desired page into the (newly) free 

frame; update the page and frame tables

3. Restart the process
21



Page Replacement
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Least Recently Used (LRU) Algorithm

 Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time 

page is referenced through this entry, copy the 

clock into the counter

 When a page needs to be changed, look at the 

counters to determine which are to change
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Fast Translation Using a TLB

 Address translation would appear to require 

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software



25

Fast Translation Using a TLB
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TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table 

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating 
the page table

 Then restart the faulting instruction
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A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?
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TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before 

destination register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur
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TLB and Cache Interaction

 If cache tag uses 

physical address

 Need to translate 

before cache lookup

 Alternative: use virtual 

address tag

 Complications due to 

aliasing

 Different virtual 

addresses for shared 

physical address



TLB and Cache Interaction
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Summary

 Fast memories are small, large memories are 
slow

 Principle of locality
 Programs use a small part of their memory space 

frequently

 Memory hierarchy
 L1 cache  L2 cache …  DRAM memory
 disk

 Memory system design is critical for 
multiprocessors


