
12. Memory Hierarchy: Virtual Memory
(メモリ階層化: 仮想メモリ)

FU05 Computer Architecture

Ben Abdallah Abderazek

E-mail: benab@u-aizu.ac.jp

Lectures of this course are adopted from the slides of the Book ‘’Computer Organization and Design - The Hardware/Software Interface, 5th Ed’’ by David. A. Patterson & John L. Hennessy

1

2

Virtual Memory

仮想メモリ
 Use main memory as a “cache” for

secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault

Virtual Addressing



3

Physical Addressing

 Used in “simple” systems like embedded

microcontrollers in devices like cars,

elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

4

Virtual Addressing

 Used in all modern servers, desktops, and

laptops

 One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

5

Why Virtual Memory (VM)?

 Uses main memory efficiently
 Use DRAM as a cache for the parts of a virtual

address space

 Simplifies memory management
 Each process gets the same uniform linear address

space

 Isolates address spaces
 One process can’t interfere with another’s

memory

 User program cannot access privileged kernel
information 6

7

Address Translation

 Fixed-size pages (e.g., 4K)

8

Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual
page number

 Page table register in CPU points to page
table in physical memory

 If page is present in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on
disk

9

Translation Using a Page Table

10

Mapping Pages to Storage

Page Hit

 Page hit: reference to VM word that is in physical

memory (DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

11

Page Fault
 If there is a reference to a page, first reference

to that page will trap to operating system:

page fault

1. Operating system looks at another table to
decide:
 Invalid reference  abort

 Just not in memory

2. Get empty frame

3. Swap page into frame

4. Reset tables

5. Set validation bit = v

6. Restart the instruction that caused the page
fault 12

Page Fault

 Page fault: reference to VM word that is not in

physical memory (DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

13

Handling Page Fault

 Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

14

Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

15

Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

16

Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

17

Summary of Handling a Page Fault

18

19

Page Fault Penalty

 On page fault, the page must be fetched

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms

Locality to the Rescue Again!
 Virtual memory works because of locality

 At any point in time, programs tend to access a
set of active virtual pages called the working set
 Programs with better temporal locality will have

smaller working sets

 If (working set size < main memory size)
 Good performance for one process after compulsory

misses

 If (SUM(working set sizes) > main memory size)
 Thrashing: Performance meltdown where pages are

swapped (copied) in and out continuously
20

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page

replacement algorithm to select a victim

frame

Bring the desired page into the (newly) free

frame; update the page and frame tables

3. Restart the process
21

Page Replacement

22

Least Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time

page is referenced through this entry, copy the

clock into the counter

 When a page needs to be changed, look at the

counters to determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

23

24

Fast Translation Using a TLB

 Address translation would appear to require

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software

25

Fast Translation Using a TLB

TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

26

27

TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating
the page table

 Then restart the faulting instruction

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

28

29

TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before

destination register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur

30

TLB and Cache Interaction

 If cache tag uses

physical address

 Need to translate

before cache lookup

 Alternative: use virtual

address tag

 Complications due to

aliasing

 Different virtual

addresses for shared

physical address

TLB and Cache Interaction

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA

miss

PTEA

hit

PA

hit

Data

PTE

L1

cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

31

32

Summary

 Fast memories are small, large memories are
slow

 Principle of locality
 Programs use a small part of their memory space

frequently

 Memory hierarchy
 L1 cache  L2 cache …  DRAM memory
 disk

 Memory system design is critical for
multiprocessors

