FUO5 Computer Architecture

12. Memory Hierarchy: virtual Memory
(AEUBRE: REBEAETY))

Ben Abdallah Abderazek
E-mail: benab@u-aizu.ac.jp

Virtual Memory

{8 AE)

= Use main memory as a “cache” for
secondary (disk) storage

= Managed jointly by CPU hardware and the
operating system (OS)
= Programs share main memory

= Each gets a private virtual address space
holding its frequently used code and data

= Protected from other programs
= CPU and OS translate virtual addresses to
physical addresses
= VM “block” is called a page
= VM translation “miss” is called a page fault

Virtual Addressing

page O

page 1

page 2 P N

—
\ m—
memory
page v physical
memo
virtual 2

memory

Physical Addressing

Main memory

0:

1:

Physical address 2

(PA) 3:

CPU 7 —> 4:
v 5:
6:

7:

8:

M-1:

Data word

= Used In “simple” systems like embedded
microcontrollers in devices like cars,
elevators, and digital picture frames

Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) (PA) '
CPU > MMU 7 -> 4.
4100 5.
A

6:
7:
8:
M-1

Data word

= Used In all modern servers, desktops, and
laptops
= One of the great ideas In computer science s

why Virtual Memory (VM)?

= Uses main memory efficiently

= Use DRAM as a cache for the parts of a virtual
address space

= Simplifies memory management

= Each process gets the same uniform linear address
space

= Isolates address spaces

= One process can't interfere with another’s
memory

= User program cannot access privileged kernel
Information

Address Translation

= Fixed-size pages (e.g., 4K)

Virtual addresses

Physical addresses

Virtual address

3130292827 «vvveeeeernvnneann. 1514131211 1098 ----vvov-- 3210

Virtual page number

Page offset

LI

Disk addresses

D928 27 wreevreiidiraiiiiiinns 15141312111098 -} 3210

Physical page number

Page offset

Physical address

Page Tables

= Stores placement information

= Array of page table entries, indexed by virtual
page number

= Page table register in CPU points to page
table in physical memory

= If page Is present in memory

= PTE stores the physical page number

= Plus other status bits (referenced, dirty, ...)
= |If page Is not present

= PTE can refer to location in swap space on
disk

Translation Using a Page Table

Page table register

Virtual address

31 30 29 28 27 cieerteiaiieiainaeinns 15 14 13 12 11 10 9 8§ ++vvve-- 39210

Virtual page number Page offset

420 412
Valid Physical page number
[] [
Page table
418
If 0 then page is not
present in memory
e I < T2 R A ...15 14 13 12 11 10 9 8-+~ 3210
Physical page number Page offset

Physical address

Mapping Pages to Storage

Virtual page
number

[]

Page table
Physical page or

Valid disk address

lil

}/

Physical memory

i
N

—_t Ot = | O b |k [O b | ek | b [k

KKQ%

e

Disk storage

10

Page Hit

= Page hit: reference to VM word that is in physical
memory (DRAM cache hit)

Virtual address

Physical page

Physical memory

(DRAM)
number or s
Valid disk address / I PP O
PTEO] 0 null //
VP 7
. G VP4 PP 3
> 1 —
0 e
0 null P Virtual memory
0 o« ~ |~ (disk)
PTE 7 1 / \\\ \\\\ VP 1
Memory resident \\ \\ 753
page table S o Sa
(DRAM) \\\ VP 3
DR VP 4
VP 6
VP 7

11

Page Fault

If there Is a reference to a page, first reference
to that page will trap to operating system:

page fault

- Operating system looks at another table to
decide:

= Invalid reference = abort
= Just not in memory

- Get empty frame

- Swap page into frame
- Reset tables

- Set validation bit = v

- Restart the instruction that caused the page
fault

12

Page Fault

= Page fault: reference to VM word that is not in
physical memory (DRAM cache miss)

Virtual address

Physical memory

Physical page (DRAM)
number or o1
Valid disk address / I
1 — VP 4
1 —
> 0 Q.
0 null P Virtual memory
0 *\/ \\\\ (dISk)
PTE7[2 o« -~ AN X
Memory resident \\\ \‘\\ VP 2
page table S Sa
(DRAM) .. VP3
\\\ VP 4
VP 6
VP 7

PPO

PP 3

13

= Page miss causes page fault (an exception)

Handling Page Fault

Virtual address

Physical memory

Physical page (DRAM)
number or s
Valid disk address / I PP O
PTEO] 0 null // 2
. G VP4 PP 3
1 —
0 e
0 null P Virtual memory
0 o« ~ |~ (disk)
PTE 7 1 / \\\ \\\ VP 1
Memory resident \\\ P2
page table ~ ~a
(DRAM) VP3
o VP 4
VP 6
VP 7

14

= Page miss causes page fault (an exception)

Handling Page Fault

= Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or o1
. <k
Va/(/)d dis adclllress % VP 2
n — VP 7
1 — VP 4
1 —
0 e
0 null P Virtual memory
0 *\/ \\\\ (dISk)
1 o« -~ AN VP 1
Memory resident ~~ _ VP 2
page table Sa
(DRAM) VP 3
- VP 4
VP 6
VP 7

PPO

PP 3

15

Handling Page Fault

= Page miss causes page fault (an exception)
= Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or = -
: <k
Va/(/)d dis adclllress /: 8
N — VP 7
: — _ VP3 PP 3
1 —
1 — |
0 e
0 null "~ Virtual memory
0 o ~ . (disk)
1 LN S VP 1
Memory resident \\\ RSN VP 2
page table S o DN
(DRAM) oo s VP3
S VP 4
VP 6
VP 7

16

= Page miss causes page fault (an exception)

Handling Page Fault

= Page fault handler selects a victim to be evicted (here VP 4)

= Offending instruction is restarted: page hit!

Virtual address

Physical memory

Physical page (DRAM)
number or =
Valid disk address /
VP 2
PTEO| 0 null // 7
1 — VP 3
1 —
0 e
0 null "~ Virtual memory
0 o« ~ 4. (disk)
PTE 7 1 / \\\ \\\ VP 1
Memory resident ~~ _ VP 2
page table
(DRAM) VP S
VP4
VP 6
VP 7

PPO

PP 3

17

Summary of Handling a Page Fault

page is on
backing store

operating
system
reference
trap
load M |« | i

restart page table

instruction
free frame (< = A
reset page bring in
table missing page
physical

memory

Page Fault Penalty

= On page fault, the page must be fetched
from disk

= Takes millions of clock cycles
= Handled by OS code
= Try to minimize page fault rate

= Fully associative placement
= Smart replacement algorithms

19

Locality to the Rescue Again!
Virtual memory works because of locality

At any point in time, programs tend to access a
set of active virtual pages called the working set

= Programs with better temporal locality will have
smaller working sets

If (working set size < main memory size)

= Good performance for one process after compulsory
misses

If (SUM(working set sizes) > main memory size)

= Thrashing: Performance meltdown where pages are
swapped (copied) in and out continuously

20

Basic Page Replacement

1. FInd the location of the desired page on disk

2. FInd a free frame:
- If there Is a free frame, use it
- If there Is no free frame, use a page
replacement algorithm to select a victim
frame
Bring the desired page into the (newly) free
frame; update the page and frame tables

3. Restart the process

21

Page Replacement

frame valid—invalid bit

N ¥
change
0 |i to invalid
1O
reset page
page table table for
new page

victim

physical
memory

swap out
victim

@ page

®

swap
desired
page in

22

Least Recently Used (LRU) Algorithm

= Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5

1((1||1}]212||5
211212 ||12]]|2
31|5(|5||4]||4
4114133]|3

= Counter implementation

= Every page entry has a counter; every time
page Is referenced through this entry, copy the
clock into the counter

= When a page needs to be changed, look at the

counters to determine which are to change
23

Fast Translation Using a TLB

= Address translation would appear to require
extra memory references
= One to access the PTE
= Then the actual memory access

= But access to page tables has good locality
= SO0 use a fast cache of PTEs within the CPU
= Called a Translation Look-aside Buffer (TLB)

= Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100
cycles for miss, 0.01%—-1% miss rate

= Misses could be handled by hardware or software

24

Fast Translation Using a TLB

TLB

Virtual page Physical page

number ValidDirty Ref Tag address

| |
1[0]1 .
1(1]1 .. Physical memory
T[T . -
1101 -
0(0[0
11071 o~

Page table
Physical page
Valid Dirty Ref or disk address

~1]0]1 :j’

1(0[0 i

1(0]0 — /M
101 — 3
0(0]0 -~ _ R

1(0[1 o 7 | |
1(0[1 T (A |
0/0]0

IERE § ~ /] |
111 « ~—
I e

111 ¢

TLB Hit

CPU Chip

TLB
Q PTE
VPN a
VA PA
> >
CPU MMU 0 Cache/
] Memory

Data

A TLB hit eliminates a memory access

TLB Misses

= If page Is In memory
= Load the PTE from memory and retry

= Could be handled in hardware

= Can get complex for more complicated page table
structures

= Or In software
= Raise a special exception, with optimized handler
= If page Is not in memory (page fault)

= OS handles fetching the page and updating
the page table

= Then restart the faulting instruction

27

TLB Miss

CPU Chip —
(4]
a PTE
VPNI }
@) @)
CPU Y 5 MMU PTEA
PA
] o
Data
(6

A TLB miss incurs an additional memory access (the PTE)

Fortunately, TLB misses are rare. Why?

Cache/
Memory

28

TLB Miss Handler

= TLB miss indicates
= Page present, but PTE not in TLB
O Page not preset

= Must recognize TLB miss before
destination register overwritten
= Raise exception

= Handler copies PTE from memory to TLB
= Then restarts instruction
= |f page not present, page fault will occur

29

TLB and Cache Interaction

P e 110082 10 If cache tag uses
o —w physical address
e o= L T pRge e Need to translate
e i - TGO ' before cache lookup

. Alternative: use virtual

Physical page number | Page offset ad d reSS tag

Physical address Block Byte

Physical address tag Cache index offse offse . .
T — l’i; e = Complications due to
aliasing
Lie Data Different virtual
Valid Ta
§ addresses for shared
Cache | | | physical address
r:)
Cache hit
J32
Dat

30

TLB and Cache Interaction

PTE
CPU Chip 2 PTEA PTE
hit
PTEA prea| PTEA
> miss
CPU VA > MMU
A PA PAl PA
miss|
PA Data
hit
L1
Data cache

Memory

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

31

Summary

Fast memories are small, large memories are
slow

Principle of locality

= Programs use a small part of their memory space
frequently

Memory hierarchy

= L1 cache <> L2 cache « ... <> DRAM memory
<> disk

Memory system design is critical for
multiprocessors

32

