FUO5 Computer Architecture

11. Memory Hierarchy: Cache
(AEVEEREIE: Fvvia)

Ben Abdallah Abderazek
E-mail: benab@u-aizu.ac.jp

Cache Memories in Computer System

Processor Cache Main Memory Disk/Flash
/—\\‘
P $ [M D
Cache Accesses =~ Main Memory Access Disk Access

(10 or fewer cycles) (100s of cycles) (100,000s of cycles)

Scenario 1: Desk + Library, No Bookshelf
“Cache”

Desk Library
(can hold one book) (can hold many books)

Need book 1
Checkout book 1
(10 min)
Read some of book 1
(10 min)
Need book 2 Return book 1
Checkout book 2
(10 min)
Read some of book 2
(10 min)
Need book 1
X Return book 2
again! Checkout book 1
(10 min)

Read some of book 1 I
(10 min)
Need book 2

« Average latency: 40 minutes
« Average throughput: 1.2 books/hour

Scenario 2: Desk + Library with Bookshelf

(1)
Cache
Desk Book Shelf Library
(can hold one book) (can hold a few books) (can hold many books)
-, [,
el
{ J
Neeq b0k L e TooRa eI (o)

Checkout book 1
and book 2
(10 min)

Read some of book 1 "

.« Check bookshelf (5m)

3 Cache Hit! (Spatial Locality)

Read some of book 2 ‘,:

*¢ Check bookshelf (5m)

Read some of book 1 I

© Cache Hit! (Temporal Locality)

Average Latency: < 20min
Average Throughput: 2 books/hour

An Example of Memory Hierarchy

LO: CPU registers hold words retrieved

Registers from L1 cache

L1: L1 cache
(SRAM) L1 cache holds cache lines retrieved

Smaller,
from L2 cache
faster,
: L2:
costlier L2 cache
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
Main memory
Llarger, (DRAM) Main memory holds disk blocks
siower, retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files

(local disks) retrieved from disks on
remote network servers

5. Remote secondary storage
. (tapes, distributed file systems, Web servers)

Typical Data Access Pattern instruction vs
data access, temporal vs spatial locality

Instruction
fetches

Stack
accesses

Data
accesses

Address /ﬂ/lﬂgmﬂm{ .
L o o

o o o e o o
o o e - . @
o o a ° o
o o
o
subroutine subroutine
call . s—return
e ¢ e © © e ©o e e -
-] _ J

@ '@ o o o
e © o o o
o o

argument access

scalar accesses
———

o o Q o o]

Time

Principle of Locality

= Programs access a small proportion of
their address space at any time

= Temporal locality

= [tems accessed recently are likely to be
accessed again soon

= €.g., Instructions In a loop, induction variables

= Spatial locality

= ltems near those accessed recently are likely
to be accessed soon

= E.g., sequential instruction access, array data

Principle of Locality

= Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

\/

C /

= Spatial locality:

= [tems with nearby addresses tend
to be referenced close together in time

Locality Example

sum = 0;

for (1 = 0; 1 < n; 1i++)
sum += al[i];

return sum;

= Data references

= Reference array elements in succession Spatial locality
(stride-1 reference pattern).

= Reference variable sum each iteration. Temporal locality
= Instruction references
= Reference instructions in sequence. Spatial locality

= Cycle through loop repeatedly. Temporal locality

Locality Example

= Question: Does this function have good
locality with respect to array a?

int sum array cols(int a[M][N])

{

int 1, j, sum = 0;

for (j = 0; j < N; J++)
for (1 = 0; 1 < M; 1i++)
sum += al[i1][]J];
return sum;

Locality Example

= Question: Does this function have good locality with respect to array a?

int sum array cols(int a[M] [N])

{
int i, Jj, sum = O;
for (j = 0; j < N; j++) //outer loop over columns (poor locality
for (i = 0; i < M; i++) // inner loop over rows
sum += al[il [J];
return sum;

)

Array Memory Layout (Row—Major Order):

[alel[e]l alel[1] af[el[2] ... a[e][n-1]]
[af1][e] al1l[1] al1]1[2] ... a[1][N-1]]
[a[21[e] al21[1] al2][2] ... a[2][N-1]]

[a[m-11[e] a[m-1]1[1] a[m-1]1[2] ...

a[M-1]1[N-1]]

Traversal Pattern:

1. Start at column @ (a[e][e], a[1][e], a[2][e], ...)

2. Move to column 1 (a[e][1], a[1][1], al[2][1], ...)

3. Continue similarly until column N-1 (a[@][N-11, a[1]1[m-1], a[2][N-1], |...

This function does not have good locality with respect to the array a. The reason lies in the

memory access pattern:

* Inthe inner loop, the function accesses a[i|[j] where i increments while j stays

constant.

[a[0][0]] ->[a[1][0]] -> [a[2][0]] ... [a[M-1][O]] -> [a[O][1]] -> [a[1][1]] ...

« This means the code is traversing the array column by column. However, in typical row-
major order (used in languages like C), elements in the same row are stored contiguously

in memory.

(e.g., a[0][0], a[0][1], a[0][2]) are stored contiguously in memory.

* Accessing memory column by column causes "cache misses," as it doesn't align with how

the data is laid out in memory.

For better locality, the function should ideally process the array row by row, which would align

with the row-major storage of the array.

10

Taking Advantage of Locality

= Memory hierarchy
= Store everything on disk

= Copy recently accessed (and nearby)
items from disk to smaller DRAM memory
= Main memory

= Copy more recently accessed (and

nearby) items from DRAM to smaller
SRAM memory

= Cache memory attached to CPU

11

Cache

Memory

General Cache Concepts

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

12

Cache

Memory

Request: 14
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

General Cache Concepts: Hit

Data in block b is needed

Block b is in cache:

Hit!

13

Cache

Memory

General Cache Concepts: Miss

Request: 12

8 12 14 3
12 Request: 12

0 1 2 3
4 5 6 Vi
8 9 10 11
12 13 14 15

00000000000 O0C0OCOOGOO

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

14

Example

Caches hold local (fast) copy of recently-accessed 64-byte chunks of memory

CPU MEMORY Se | Addr Cached Data
Sends address, CACHE L ~648 ad , MAIN
Address:
. 0 | rooi6280 | B5 F5 8021 E3 2¢..
Receives data 31C6FACO | 9A DA 59 11 48 F2.. 132E1340, MEMORY
339DD740 | C7 D7 A0 86 67 18. . P
614F8480 17 4C 59 B8 58 A7.. Data: B|g SIOW
. 7
=Y 1 | 71685100 |27 8D 5D 2E 84 29.. e.g. 16GB SDRAM
jﬁ(231C0700 | 30 m2 8% 27 05 o0 . AC99178F4409.¢
2A1C0700 | 9E C3 DA EE B7 D9. .
Addr: ~— h(addr CO17E9CO | D1 76 16 54 51 5B. .
Rk époqia;bEE 57 3. 4T) to 2 | 311956c0 | 0a 55 47 82 86 4E. .
.l map to 002D47C0 | c4 15 4D 78 B5 C4. .
. el 91507E80 | 60 DO 2C DD 78 14..
%g;ﬁi?[’ T cache —iep. 55194040 | DF 66 E9 DO 11 43.. Reads change system
E 0 | 3 9B27F8CO | 84 A0 7F C7 4E BC. . state:
Addr: b Set E 8E771100 | 3B OB 20 OC DB 58. .
e A) 132E1340 | AC 99 17 8F 44 * Next read to newly-
153281340 S17178C0 09.. i cached location is
4 6618E980 | 35 11 4A EQ0 2E F1.. -
BAOCDB40 | BO FC 5A 20 DO 7F.. faster
89E92C00 | 1C 50 A4 F8 EB 6F. . . q icted
090F9C40 | BB 71 ED 16 07 1F. . Next read to evicted

location is slower

General Cache Organization (S, E, B)

S=2%sets <

E = 2¢ lines per set

_A
Ve ~N
o0 00
o000
o0 00
O 0000000000 000OCOCEOGEOEOOOEOOEOOS® O®OO
o0 00
Cache size:
C =S x E x B data bytes
Vv tag 1 2 oooooo B—l
valid bit ~————

B = 2° bytes per cache block (the data)

15

Cache Read

E = 2¢ lines per set

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

p A ~ * Locate data starting
r at offset
o000
Address of word:
o0 t bits s bits | b bits
_ s W_M_W
S=2° sets 4 *oee tag set block
index offset
0 000000000000 OCOGCOGEOGOEOGOEOGEOSGSEOSOSOSOOSOO
o000
\.
vV tag Ol112] eocce- B-1
valid bit S~ ~— —

B = 2° bytes per cache block (the data)

16

Example: Direct Mapped Cache (E =1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 Address of int:

v ta ol1]213T4a]s[6]7
g thits | 0..01 | 100

\Y; ta 0111213141516 7 -
& find set

S=255ets<
\Y; tag 0111213141516 7

v tag 01112]314]|5]6]7

Example: Direct Mapped Cache (E=1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

Y tag 011]12]1314]5

block offset

18

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

v tag 01112]314]|5]|6]7

int (4 Bytes) is here

No match: old line is evicted and replaced

block offset

19

set O:

set 1:

set S-1:

Addressing Caches

Address A:
t bits s bits b bits
m-1 0
tag [[O[1]<--|B-1 \ J\)\)
o o o Y Y Y
tag 011 ee Bl <tag> <setindex> <block offset>
tag |[[0]21]--- B2 _
tag 0]1 .. B-1 — :
The word at address A is in the cache if
oo the tag bits in one of the <valid> lines in
tag O] 1][e-° B-1 set <set index> match <tag>.
tag 0 1]+ [B1 The word contents begin at offset

<block offset> bytes from the beginning
of the block.

20

Direct-Mapped Cache

= Simplest kind of cache
= Characterized by exactly one line per

set.

set O:

set 1:

set S-1:

valid tag cache block
valid tag cache block
valid tag cache block

} E=1 lines per set

21

Accessing Direct-Mapped Caches

s Set selection

= Use the set index bits to determine the

set of interest.

set O: | |valid

selected set

> set 1:‘ valid

thits [sbhits) b bits

00 001 set S-1:

tag cache block
tag cache block
valid tag cache block

m-1

tag set index block offset °

22

Accessing Direct-Mapped Caches

= Line matching and word selection

= Line matching: Find a valid line in the selected
set with a matching tag

= \Word selection: Then extract the word
=1? (1) The valid bit must be set

0 1 2 3 4 5 6 7

selected set (i): | 1 | | 0110 | Wo | Wy | W, &I
(2) The tag bits in the cache ¥ (3) If (1) and (2), then
line must match the B cache hit
tag bits in the address I and block off’set
A
t bits s bits b bits selects

starting byte.

0110 [100
tag set index block offset °

m-1

23

Set Associlative Caches

= Characterized by more than one line

per set
valid tag cache block
set O:
valid tag cache block
valid tag cache block
set 1:
valid tag cache block
valid tag cache block
set S-1:
valid tag cache block

} E=2 lines per set

24

Accessing Set Associlative Caches

= Set selection
= Identical to direct-mapped cache

valid tag cache block
set O:
valid tag cache block
valid tag cache block
Selected set . set1:
valid tag cache block
) valid tag cache block
' ' - -1:
thits 0 g %It; 1 © b bits sets valid tag cache block

m-1

tag set index block offset °

Accessing Set Assoclative Caches

= Line matching and word selection

= must compare the tag in each valid line In the

selected set.
=1? (1) The valid bit must be set.

A A

1 1001

selected set (){ (=9 (o] [Lo, [w, T, |

A

(2) The tag bits in one v v (3) If (1) and (2), then

of the cache lines must =7 cache hit, and
match the tag bits in I r block o.ffset selects
the address - N p . starting byte.
t bits S bits b bits
0110 i 100

m-1

tag set index block offset °

26

Placement policy

block 12 can be placed

Block
Number

Memory

Set
Number

Cache

111111111122222222225?
0123456789012345678901234567890 1

Fully
Associative
anywhere

(2-way) Set
Associative
anywhere in

set O

(12 mod 4)

01234567

Direct
Mapped
only into
block 4
(12 mod 8)

27

Direct-Mapped Cache

Block
Tag Index Offce
7_' . t .
/k 7
V| Tag Data Block
2k
] 1 1 i { lines
I
N~

31
> Data Word or Byte

28

2-Way Set-Associlative Cache

Tag

Index

Block
Offset

Z.

T d

Tag Data Block V

k

Tag

Data Block

Data
Word
or Byte

HIT

29

Block

Offset

' b

Fully Associative Cache

Data
Word

or Byte

HIT

30

Multi-Level Caches

= Options: separate data and instruction caches, or a
unified cache

size:
speed:
$/Mbyte:

line size.

Regs f=——

L1
d-cache

Processor

L1
I-cache

200 B
3 ns

8B

Unified
L2
Cache

8-64 KB 1-4MB SRAM128 MB DRAM 30 GB

3 ns

32B

6 NS 60 ns 8 ms
$100/MB $1.50/MB $0.05/MB
32 B 8 KB

larger, slower, cheaper

Intel Core 17 Cache Hierarchy

Processor package

Access: 30-40 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

Core 0 Core 3 . L1i-cache and d-cache:
R R : 32 KB, 8-way,
€gS €9s Access: 4 cycles

| L L1 L1 L1 L2 unified cache:

. | d-cachg |i-cache d-cachg |i-cache| | ! 256 KB, 8-way,
" Access: 11 cycles

| L2 unified L2 unified i

: cache cache + L3 unified cache:

8 MB, 16-way,

__

Main memory

32

Cache Performance Metrics

= Miss Rate

= Fraction of memory references not found in cache (misses /
accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
= Hit Time
= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache

= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

= Miss Penalty

= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

33

Lets think about those numbers

= Huge difference between a hit and a miss
= Could be 100k, if just L1 and main memory

= Would you believe 99% hits Is twice as good as
97%"7

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles =4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”

34

Writing Cache Friendly Code

= Make the common case go fast
= Focus on the inner loops of the core functions

= Minimize the misses in the inner loops

= Repeated references to variables are good
(temporal locality)

= Stride-1 reference patterns are good (spatial
locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

35

Memory Technology

Static RAM (SRAM)
= 0.5ns — 2.5ns, $2000 — $5000 per GB

Dynamic RAM (DRAM)

= 50ns — 70ns, $20 — $75 per GB
Magnetic disk

= 5ms — 20ms, $0.20 — $2 per GB

ldeal memory
= Access time of SRAM
= Capacity and cost/GB of disk

36

Exercise

(a) What are the two characteristics of program memory accesses that
caches exploit?

(b) Why is miss rate not a good metric for evaluating cache performance?
What is the appropriate metric? Give its definition. What is the reason for
using a combination of first and second- level caches rather than using the
same chip area for a larger first-level cache?

Solution:

37

Exercise

(a) What are the two characteristics of program memory accesses that
caches exploit?

(b) Why is miss rate not a good metric for evaluating cache performance?
What is the appropriate metric? Give its definition. What is the reason for
using a combination of first and second- level caches rather than using the
same chip area for a larger first-level cache?

Solution:

(@)

Temporal and spatial locality

(b)
The ultimate metric for cache performance is average

access time: tavg = thit + miss-rate * tmiss. The miss rate is only one component of this equation. A cache

may have a low miss rate, but an extremely high penalty per miss, making it lower-performing than a cache
with a higher miss rate but a substantially lower miss penalty. Alternatively, it may have a low miss rate but
a high hit time (this is true for large fully associative caches, for instance).

Multiple levels of cache are used for exactly this reason. Not all of the performance factors can be
optimized in a single cache. Specifically, with tmiss (memory latency) given, it is difficult to design a cache
which is both fast in the common case (a hit) and minimizes the costly uncommon case by having a low
miss rate. These two design goals are achieved using two caches. The first level cache minimizes the hit
time, therefore it is usually small with a low-associativity. The second level cache minimizes the miss rate, it
Is usually large with large blocks and a higher associativity.

38

	Slide 1
	Slide 2: Cache Memories in Computer System
	Slide 3: Scenario 1: Desk + Library, No Bookshelf “Cache”
	Slide 4: Scenario 2: Desk + Library with Bookshelf “Cache”
	Slide 5: An Example of Memory Hierarchy
	Slide 6: Typical Data Access Pattern instruction vs data access, temporal vs spatial locality
	Slide 7: Principle of Locality
	Slide 8: Principle of Locality
	Slide 9: Locality Example
	Slide 10: Locality Example
	Slide 11: Locality Example
	Slide 12: Taking Advantage of Locality
	Slide 13: General Cache Concepts
	Slide 14: General Cache Concepts: Hit
	Slide 15: General Cache Concepts: Miss
	Slide 16: Example
	Slide 17: General Cache Organization (S, E, B)
	Slide 18: Cache Read
	Slide 19: Example: Direct Mapped Cache (E = 1)
	Slide 20: Example: Direct Mapped Cache (E = 1)
	Slide 21: Example: Direct Mapped Cache (E = 1)
	Slide 22: Addressing Caches
	Slide 23: Direct-Mapped Cache
	Slide 24: Accessing Direct-Mapped Caches
	Slide 25: Accessing Direct-Mapped Caches
	Slide 27: Set Associative Caches
	Slide 28: Accessing Set Associative Caches
	Slide 29: Accessing Set Associative Caches
	Slide 30: Placement policy
	Slide 31: Direct-Mapped Cache
	Slide 32: 2-Way Set-Associative Cache
	Slide 33: Fully Associative Cache
	Slide 34: Multi-Level Caches
	Slide 35: Intel Core i7 Cache Hierarchy
	Slide 36: Cache Performance Metrics
	Slide 37: Lets think about those numbers
	Slide 38: Writing Cache Friendly Code
	Slide 39: Memory Technology
	Slide 40: Exercise
	Slide 41: Exercise

