
11. Memory Hierarchy: Cache
(メモリ階層化: キャッシュ)

FU05 Computer Architecture

Ben Abdallah Abderazek

E-mail: benab@u-aizu.ac.jp

Lectures of this course are adopted from the slides of the Book ‘’Computer Organization and Design - The Hardware/Software Interface, 5th Ed’’ by David. A. Patterson & John L. Hennessy

1

Cache Memories in Computer System

2

Scenario 1: Desk + Library, No Bookshelf

“Cache”

• Average latency: 40 minutes

• Average throughput: 1.2 books/hour
3

Scenario 2: Desk + Library with Bookshelf

“Cache”

• Average Latency: < 20min

• Average Throughput: 2 books/hour

4

An Example of Memory Hierarchy

Registers

L1 cache
 (SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from L2 cache

CPU registers hold words retrieved
from L1 cache

L2 cache holds cache lines
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

5

Typical Data Access Pattern instruction vs

data access, temporal vs spatial locality

6

Principle of Locality

◼ Programs access a small proportion of

their address space at any time

◼ Temporal locality

◼ Items accessed recently are likely to be

accessed again soon

◼ e.g., instructions in a loop, induction variables

◼ Spatial locality

◼ Items near those accessed recently are likely

to be accessed soon

◼ E.g., sequential instruction access, array data

7

Principle of Locality

◼ Temporal locality:

◼ Recently referenced items are likely

to be referenced again in the near future

◼ Spatial locality:

◼ Items with nearby addresses tend

to be referenced close together in time

8

Locality Example

◼ Data references
◼ Reference array elements in succession

(stride-1 reference pattern).

◼ Reference variable sum each iteration.

◼ Instruction references
◼ Reference instructions in sequence.

◼ Cycle through loop repeatedly.

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

9

Locality Example

◼ Question: Does this function have good
locality with respect to array a?

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

10

Locality Example
◼ Question: Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++) //outer loop over columns (poor locality)

 for (i = 0; i < M; i++) // inner loop over rows

 sum += a[i][j];

 return sum;

}

10

This function does not have good locality with respect to the array a. The reason lies in the

memory access pattern:

• In the inner loop, the function accesses a[i][j] where i increments while j stays

constant.

• This means the code is traversing the array column by column. However, in typical row-

major order (used in languages like C), elements in the same row are stored contiguously

in memory.

• Accessing memory column by column causes "cache misses," as it doesn't align with how

the data is laid out in memory.

For better locality, the function should ideally process the array row by row, which would align

with the row-major storage of the array.

[a[0][0]] -> [a[1][0]] -> [a[2][0]] ... [a[M-1][0]] -> [a[0][1]] -> [a[1][1]] ...

(e.g., a[0][0], a[0][1], a[0][2]) are stored contiguously in memory.

Taking Advantage of Locality

◼ Memory hierarchy

◼ Store everything on disk

◼ Copy recently accessed (and nearby)

items from disk to smaller DRAM memory

◼ Main memory

◼ Copy more recently accessed (and

nearby) items from DRAM to smaller

SRAM memory

◼ Cache memory attached to CPU

11

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

12

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

13

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

14

◼ Caches hold local (fast) copy of recently-accessed 64-byte chunks of memory

Example

MAIN
MEMORY

Big, slow
e.g. 16GB SDRAM

Se

t

Addr Cached Data

~64B

0 F0016280

31C6F4C0

339DD740

614F8480

B5 F5 80 21 E3 2C..

9A DA 59 11 48 F2..

C7 D7 A0 86 67 18..

17 4C 59 B8 58 A7..

1 71685100

132A4880

2A1C0700

C017E9C0

27 BD 5D 2E 84 29..

30 B2 8F 27 05 9C..

9E C3 DA EE B7 D9..

D1 76 16 54 51 5B..

2 311956C0

002D47C0

91507E80

55194040

0A 55 47 82 86 4E..

C4 15 4D 78 B5 C4..

60 D0 2C DD 78 14..

DF 66 E9 D0 11 43..

3 9B27F8C0

8E771100

A001FB40

317178C0

84 A0 7F C7 4E BC..

3B 0B 20 0C DB 58..

29 D9 F5 6A 72 50..

35 82 CB 91 78 8B..

4 6618E980

BA0CDB40

89E92C00

090F9C40

35 11 4A E0 2E F1..

B0 FC 5A 20 D0 7F..

1C 50 A4 F8 EB 6F..

BB 71 ED 16 07 1F..

Addr:

2A1C0700
Data: 9E C3 DA EE B7 D3..

Addr:

132E1340

Address:

132E1340

Data: AC 99 17 8F 44 09..

Addr:

132E1340
Data: AC 99 17 8F 44 09..

h(addr
) to

map to
cache

set
132E1340 Evict to make

room

AC 99 17 8F 44

09..

MEMORY
CACHE

2A1C0700

Data:

AC 99 17 8F 44 09..

CPU
Sends address,
Receives data

Reads change system
state:

• Next read to newly-
cached location is
faster

• Next read to evicted
location is slower

General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit

15

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

16

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

17

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

18

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

19

Addressing Caches

t bits s bits b bits

0m-1

<tag> <set index> <block offset>

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •

The word at address A is in the cache if

the tag bits in one of the <valid> lines in

set <set index> match <tag>.

The word contents begin at offset

<block offset> bytes from the beginning

of the block.

20

Direct-Mapped Cache

◼ Simplest kind of cache

◼ Characterized by exactly one line per

set.
valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1 lines per setcache block

cache block

cache block

21

Accessing Direct-Mapped Caches

◼ Set selection

◼ Use the set index bits to determine the

set of interest.
valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:
t bits s bits

0 0 0 0 1
0m-1

b bits

tag set index block offset

selected set

cache block

cache block

cache block

22

Accessing Direct-Mapped Caches

◼ Line matching and word selection

◼ Line matching: Find a valid line in the selected

set with a matching tag

◼ Word selection: Then extract the word

1

t bits s bits

100i0110
0m-1

b bits

tag set index block offset

selected set (i):

(3) If (1) and (2), then

cache hit,

and block offset

selects

starting byte.

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the cache

line must match the

tag bits in the address

0110 w3w0 w1 w2

30 1 2 74 5 6

23

Set Associative Caches

◼ Characterized by more than one line

per set

valid tag
set 0: E=2 lines per set

set 1:

set S-1:

• • •

cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

24

Accessing Set Associative Caches

◼ Set selection

◼ identical to direct-mapped cache

valid

valid

tag

tag
set 0:

valid

valid

tag

tag
set 1:

valid

valid

tag

tag
set S-1:

• • •

t bits s bits

0 0 0 0 1
0m-1

b bits

tag set index block offset

Selected set

cache block

cache block

cache block

cache block

cache block

cache block

25

Accessing Set Associative Caches

◼ Line matching and word selection

◼ must compare the tag in each valid line in the

selected set.

1 0110 w3w0 w1 w2

1 1001

t bits s bits

100i0110
0m-1

b bits

tag set index block offset

selected set (i):

=1? (1) The valid bit must be set.

= ?
(2) The tag bits in one

of the cache lines must

match the tag bits in

the address

(3) If (1) and (2), then

cache hit, and

 block offset selects

starting byte.

30 1 2 74 5 6

26

Placement policy

0 1 2 3 4 5 6 70 1 2 3Set
Number

Cache

Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into
 set 0 block 4
 (12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block
Number

block 12 can be placed
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

27

Direct-Mapped Cache

Tag Data BlockV

=

Block
Offse
t

Tag Index

t
k b

t

HIT Data Word or Byte

2k

lines

31

28

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t
k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

32

29

Fully Associative Cache

Tag Data BlockV

=

B
lo

c
k

O
ff
s
e
t

T
a
g

t

b

HIT

Data
Word
or Byte

=

=

t

30

Multi-Level Caches

◼ Options: separate data and instruction caches, or a

unified cache

size:

speed:

$/Mbyte:

line size:

200 B

3 ns

8 B

8-64 KB

3 ns

32 B

128 MB DRAM

60 ns

$1.50/MB

8 KB

30 GB

8 ms

$0.05/MB

larger, slower, cheaper

Memory

L1

d-cache
Regs

Unified

L2

Cache
Processor

1-4MB SRAM

6 ns

$100/MB

32 B

L1

i-cache

disk

31

Intel Core i7 Cache Hierarchy

Regs

L1

d-cache

L1

i-cache

L2 unified

cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified

cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches.

32

Cache Performance Metrics
◼ Miss Rate

◼ Fraction of memory references not found in cache (misses /
accesses)
= 1 – hit rate

◼ Typical numbers (in percentages):
◼ 3-10% for L1

◼ can be quite small (e.g., < 1%) for L2, depending on size, etc.

◼ Hit Time
◼ Time to deliver a line in the cache to the processor

◼ includes time to determine whether the line is in the cache

◼ Typical numbers:
◼ 1-2 clock cycle for L1

◼ 5-20 clock cycles for L2

◼ Miss Penalty
◼ Additional time required because of a miss

◼ typically 50-200 cycles for main memory (Trend: increasing!)

33

Lets think about those numbers

◼ Huge difference between a hit and a miss
◼ Could be 100x, if just L1 and main memory

◼ Would you believe 99% hits is twice as good as
97%?

◼ Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

◼ Average access time:

 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”

34

Writing Cache Friendly Code

◼ Make the common case go fast

◼ Focus on the inner loops of the core functions

◼ Minimize the misses in the inner loops

◼ Repeated references to variables are good

(temporal locality)

◼ Stride-1 reference patterns are good (spatial

locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

35

Memory Technology

◼ Static RAM (SRAM)

◼ 0.5ns – 2.5ns, $2000 – $5000 per GB

◼ Dynamic RAM (DRAM)

◼ 50ns – 70ns, $20 – $75 per GB

◼ Magnetic disk

◼ 5ms – 20ms, $0.20 – $2 per GB

◼ Ideal memory

◼ Access time of SRAM

◼ Capacity and cost/GB of disk

36

Exercise
(a) What are the two characteristics of program memory accesses that

caches exploit?

(b) Why is miss rate not a good metric for evaluating cache performance?

What is the appropriate metric? Give its definition. What is the reason for

using a combination of first and second- level caches rather than using the

same chip area for a larger first-level cache?

Solution:

37

Exercise
(a) What are the two characteristics of program memory accesses that

caches exploit?

(b) Why is miss rate not a good metric for evaluating cache performance?

What is the appropriate metric? Give its definition. What is the reason for

using a combination of first and second- level caches rather than using the

same chip area for a larger first-level cache?

Solution:

(a)

Temporal and spatial locality

(b)

The ultimate metric for cache performance is average

access time: tavg = thit + miss-rate * tmiss. The miss rate is only one component of this equation. A cache

may have a low miss rate, but an extremely high penalty per miss, making it lower-performing than a cache

with a higher miss rate but a substantially lower miss penalty. Alternatively, it may have a low miss rate but

a high hit time (this is true for large fully associative caches, for instance).

Multiple levels of cache are used for exactly this reason. Not all of the performance factors can be

optimized in a single cache. Specifically, with tmiss (memory latency) given, it is difficult to design a cache

which is both fast in the common case (a hit) and minimizes the costly uncommon case by having a low

miss rate. These two design goals are achieved using two caches. The first level cache minimizes the hit

time, therefore it is usually small with a low-associativity. The second level cache minimizes the miss rate, it

is usually large with large blocks and a higher associativity.
38

	Slide 1
	Slide 2: Cache Memories in Computer System
	Slide 3: Scenario 1: Desk + Library, No Bookshelf “Cache”
	Slide 4: Scenario 2: Desk + Library with Bookshelf “Cache”
	Slide 5: An Example of Memory Hierarchy
	Slide 6: Typical Data Access Pattern instruction vs data access, temporal vs spatial locality
	Slide 7: Principle of Locality
	Slide 8: Principle of Locality
	Slide 9: Locality Example
	Slide 10: Locality Example
	Slide 11: Locality Example
	Slide 12: Taking Advantage of Locality
	Slide 13: General Cache Concepts
	Slide 14: General Cache Concepts: Hit
	Slide 15: General Cache Concepts: Miss
	Slide 16: Example
	Slide 17: General Cache Organization (S, E, B)
	Slide 18: Cache Read
	Slide 19: Example: Direct Mapped Cache (E = 1)
	Slide 20: Example: Direct Mapped Cache (E = 1)
	Slide 21: Example: Direct Mapped Cache (E = 1)
	Slide 22: Addressing Caches
	Slide 23: Direct-Mapped Cache
	Slide 24: Accessing Direct-Mapped Caches
	Slide 25: Accessing Direct-Mapped Caches
	Slide 27: Set Associative Caches
	Slide 28: Accessing Set Associative Caches
	Slide 29: Accessing Set Associative Caches
	Slide 30: Placement policy
	Slide 31: Direct-Mapped Cache
	Slide 32: 2-Way Set-Associative Cache
	Slide 33: Fully Associative Cache
	Slide 34: Multi-Level Caches
	Slide 35: Intel Core i7 Cache Hierarchy
	Slide 36: Cache Performance Metrics
	Slide 37: Lets think about those numbers
	Slide 38: Writing Cache Friendly Code
	Slide 39: Memory Technology
	Slide 40: Exercise
	Slide 41: Exercise

