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Cache Memories in Computer System
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Scenario 1: Desk + Library, No Bookshelf 

“Cache” 

• Average latency: 40 minutes 

• Average throughput: 1.2 books/hour 
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Scenario 2: Desk + Library with Bookshelf 

“Cache” 

• Average Latency: < 20min

• Average Throughput: 2 books/hour 
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An Example of Memory Hierarchy

Registers

L1 cache
 (SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved 
from L2 cache

CPU registers hold words retrieved 
from L1 cache

L2 cache holds cache lines 
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte
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Typical Data Access Pattern instruction vs 

data access, temporal vs spatial locality
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Principle of Locality

◼ Programs access a small proportion of 

their address space at any time

◼ Temporal locality

◼ Items accessed recently are likely to be 

accessed again soon

◼ e.g., instructions in a loop, induction variables

◼ Spatial locality

◼ Items near those accessed recently are likely 

to be accessed soon

◼ E.g., sequential instruction access, array data
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Principle of Locality

◼ Temporal locality:  

◼ Recently referenced items are likely 

to be referenced again in the near future

◼ Spatial locality:  

◼ Items with nearby addresses tend 

to be referenced close together in time
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Locality Example

◼ Data references
◼ Reference array elements in succession 

(stride-1 reference pattern).

◼ Reference variable sum each iteration.

◼ Instruction references
◼ Reference instructions in sequence.

◼ Cycle through loop repeatedly. 

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality
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Locality Example

◼ Question: Does this function have good 
locality with respect to array a?

int sum_array_cols(int a[M][N])

{

    int i, j, sum = 0;

    for (j = 0; j < N; j++)

        for (i = 0; i < M; i++)

            sum += a[i][j];

    return sum;

}
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Locality Example
◼ Question: Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])

{

    int i, j, sum = 0;

    for (j = 0; j < N; j++) //outer loop over columns (poor locality )

        for (i = 0; i < M; i++) // inner loop over rows

            sum += a[i][j];

    return sum;

}
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This function does not have good locality with respect to the array a. The reason lies in the 

memory access pattern:

• In the inner loop, the function accesses a[i][j] where i increments while j stays 

constant.

• This means the code is traversing the array column by column. However, in typical row-

major order (used in languages like C), elements in the same row are stored contiguously 

in memory. 

• Accessing memory column by column causes "cache misses," as it doesn't align with how 

the data is laid out in memory.

For better locality, the function should ideally process the array row by row, which would align 

with the row-major storage of the array. 

[ a[0][0] ] -> [ a[1][0] ] -> [ a[2][0] ] ... [ a[M-1][0] ] -> [ a[0][1] ] -> [ a[1][1] ] ...

(e.g., a[0][0], a[0][1], a[0][2]) are stored contiguously in memory. 



Taking Advantage of Locality

◼ Memory hierarchy

◼ Store everything on disk

◼ Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory

◼ Main memory

◼ Copy more recently accessed (and 

nearby) items from DRAM to smaller 

SRAM memory

◼ Cache memory attached to CPU
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General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)
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◼ Caches hold local (fast) copy of recently-accessed 64-byte chunks of memory

Example

MAIN 
MEMORY

Big, slow
e.g. 16GB SDRAM

Se

t

Addr Cached Data 

~64B

0 F0016280

31C6F4C0

339DD740

614F8480

B5 F5 80 21 E3 2C..

9A DA 59 11 48 F2..

C7 D7 A0 86 67 18..

17 4C 59 B8 58 A7..

1 71685100

132A4880

2A1C0700

C017E9C0

27 BD 5D 2E 84 29..

30 B2 8F 27 05 9C..

9E C3 DA EE B7 D9..

D1 76 16 54 51 5B..

2 311956C0

002D47C0

91507E80

55194040

0A 55 47 82 86 4E..

C4 15 4D 78 B5 C4..

60 D0 2C DD 78 14..

DF 66 E9 D0 11 43..

3 9B27F8C0

8E771100

A001FB40

317178C0

84 A0 7F C7 4E BC..

3B 0B 20 0C DB 58..

29 D9 F5 6A 72 50..

35 82 CB 91 78 8B..

4 6618E980

BA0CDB40

89E92C00

090F9C40

35 11 4A E0 2E F1..

B0 FC 5A 20 D0 7F..

1C 50 A4 F8 EB 6F..

BB 71 ED 16 07 1F..

Addr: 

2A1C0700
Data: 9E C3 DA EE B7 D3..

Addr: 

132E1340

Address:

132E1340

Data: AC 99 17 8F 44 09..

Addr: 

132E1340
Data: AC 99 17 8F 44 09..

h(addr
) to 

map to 
cache 

set
132E1340 Evict to make 

room

AC 99 17 8F 44 

09..

MEMORY 
CACHE

2A1C0700

Data:

AC 99 17 8F 44 09..

CPU
Sends address,
Receives data

Reads change system 
state:

• Next read to newly-
cached location is 
faster

• Next read to evicted 
location is slower



General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit
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Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

16



Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

19



Addressing  Caches

t bits s bits b bits

0m-1

<tag> <set index> <block offset>

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •

The word at address A is in the cache if

the tag bits in one of the <valid> lines in 

set <set index> match <tag>.

The word contents begin at offset 

<block offset> bytes from the beginning 

of the block.   
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Direct-Mapped Cache

◼ Simplest kind of cache

◼ Characterized by exactly one line per 

set.
valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1  lines per setcache block

cache block

cache block
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Accessing Direct-Mapped Caches

◼ Set selection

◼ Use the set index bits to determine the 

set of interest.
valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:
t bits s bits

0 0  0 0 1
0m-1

b bits

tag set index block offset

selected set

cache block

cache block

cache block
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Accessing Direct-Mapped Caches

◼ Line matching and word selection

◼ Line matching: Find a valid line in the selected 

set with a matching tag

◼ Word selection: Then extract the word

1

t bits s bits

100i0110
0m-1

b bits

tag set index block offset

selected set (i):

(3) If (1) and (2), then 

cache hit,

and block offset 

selects

starting byte. 

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the cache

line must match the

tag bits in the address

0110 w3w0 w1 w2

30 1 2 74 5 6
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Set Associative Caches

◼ Characterized by more than one line 

per set

valid tag
set 0: E=2  lines per set

set 1:

set S-1:

• • •

cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block
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Accessing Set Associative Caches

◼ Set selection

◼ identical to direct-mapped cache

valid

valid

tag

tag
set 0:

valid

valid

tag

tag
set 1:

valid

valid

tag

tag
set S-1:

• • •

t bits s bits

0 0  0 0 1
0m-1

b bits

tag set index block offset

Selected set

cache block

cache block

cache block

cache block

cache block

cache block
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Accessing Set Associative Caches

◼ Line matching and word selection

◼ must compare the tag in each valid line in the 

selected set.

1 0110 w3w0 w1 w2

1 1001

t bits s bits

100i0110
0m-1

b bits

tag set index block offset

selected set (i):

=1? (1) The valid bit must be set.

= ?
(2) The tag bits in one  

of the cache lines must 

match the tag bits in

the address

(3) If (1) and (2), then 

cache hit, and

 block  offset selects 

starting byte.

30 1 2 74 5 6
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Placement policy

0 1 2 3 4 5 6 70     1      2     3Set 
Number

Cache

Fully  (2-way) Set        Direct
Associative Associative         Mapped
anywhere anywhere in     only into
                set 0            block 4 
          (12 mod 4)    (12 mod 8)

0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block 
Number

block 12 can be placed
1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9

3 3
0 1
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Direct-Mapped Cache

Tag Data BlockV

=

Block
Offse
t

Tag Index

t
k b

t

HIT Data Word or Byte

2k

lines

31

28



2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t
k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

32
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Fully Associative Cache

Tag Data BlockV

=

B
lo

c
k

O
ff
s
e
t

T
a
g

t

b

HIT

Data
Word
or Byte

=

=

t
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Multi-Level Caches

◼ Options: separate data and instruction caches, or a 

unified cache

size:

speed:

$/Mbyte:

line size:

200 B

3 ns

8 B

8-64 KB

3  ns

32 B

128 MB DRAM

60 ns

$1.50/MB

8  KB

30 GB

8 ms

$0.05/MB

larger, slower, cheaper

Memory

L1 

d-cache
Regs

Unified

L2 

Cache
Processor

1-4MB SRAM

6 ns

$100/MB

32 B

L1 

i-cache

disk
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Intel Core i7 Cache Hierarchy

Regs

L1 

d-cache

L1 

i-cache

L2 unified 

cache

Core 0

Regs

L1 

d-cache

L1 

i-cache

L2 unified 

cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way, 
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for 
all caches. 
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Cache Performance Metrics
◼ Miss Rate

◼ Fraction of memory references not found in cache (misses / 
accesses)
= 1 – hit rate

◼ Typical numbers (in percentages):
◼ 3-10% for L1

◼ can be quite small (e.g., < 1%) for L2, depending on size, etc.

◼ Hit Time
◼ Time to deliver a line in the cache to the processor

◼ includes time to determine whether the line is in the cache

◼ Typical numbers:
◼ 1-2 clock cycle for L1

◼ 5-20 clock cycles for L2

◼ Miss Penalty
◼ Additional time required because of a miss

◼ typically 50-200 cycles for main memory (Trend: increasing!)
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Lets think about those numbers

◼ Huge difference between a hit and a miss
◼ Could be 100x, if just L1 and main memory

◼ Would you believe 99% hits is twice as good as 
97%?

◼ Consider: 
cache hit time of 1 cycle
miss penalty of 100 cycles

◼ Average access time:

  97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles

  99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

◼ Make the common case go fast

◼ Focus on the inner loops of the core functions

◼ Minimize the misses in the inner loops

◼ Repeated references to variables are good 

(temporal locality)

◼ Stride-1 reference patterns are good (spatial 

locality)

Key idea: Our qualitative notion of locality is quantified 
through our understanding of cache memories.
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Memory Technology

◼ Static RAM (SRAM)

◼ 0.5ns – 2.5ns, $2000 – $5000 per GB

◼ Dynamic RAM (DRAM)

◼ 50ns – 70ns, $20 – $75 per GB

◼ Magnetic disk

◼ 5ms – 20ms, $0.20 – $2 per GB

◼ Ideal memory

◼ Access time of SRAM

◼ Capacity and cost/GB of disk
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Exercise 
(a) What are the two characteristics of program memory accesses that 

caches exploit?

(b) Why is miss rate not a good metric for evaluating cache performance? 

What is the appropriate metric? Give its definition. What is the reason for 

using a combination of first and second- level caches rather than using the 

same chip area for a larger first-level cache?

Solution: 

37



Exercise 
(a) What are the two characteristics of program memory accesses that 

caches exploit?

(b) Why is miss rate not a good metric for evaluating cache performance? 

What is the appropriate metric? Give its definition. What is the reason for 

using a combination of first and second- level caches rather than using the 

same chip area for a larger first-level cache?

Solution: 

(a)

Temporal and spatial locality

(b)

The ultimate metric for cache performance is average 

access time: tavg = thit + miss-rate * tmiss. The miss rate is only one component of this equation. A cache 

may have a low miss rate, but an extremely high penalty per miss, making it lower-performing than a cache 

with a higher miss rate but a substantially lower miss penalty. Alternatively, it may have a low miss rate but 

a high hit time (this is true for large fully associative caches, for instance). 

Multiple levels of cache are used for exactly this reason. Not all of the performance factors can be 

optimized in a single cache. Specifically, with tmiss (memory latency) given, it is difficult to design a cache 

which is both fast in the common case (a hit) and minimizes the costly uncommon case by having a low 

miss rate. These two design goals are achieved using two caches. The first level cache minimizes the hit 

time, therefore it is usually small with a low-associativity. The second level cache minimizes the miss rate, it 

is usually large with large blocks and a higher associativity.
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