FUO5 Computer Architecture
10. Pipeline 2: Hazards

(I TSA2:1\H—R)

Ben Abdallah Abderazek
E-mail: benab@u-aizu.ac.jp

Data Hazards in ALU Instructions

= Consider this sequence:
sub , $1,93
and $12,%2,9%5
or $13, %6,
add $14,5”,
sw $15,100(52)

= We can resolve hazards with forwarding
= How do we detect when to forward?

Dependencies & Forwarding

Time (in clock cycles) >
Value of CC1 cC2 CcC3 CcC4 CC5 cCé cC7 ccs cC9
register $2: 10 10 10 10 10/-20 =20 =20 =20 -20

Program
execution
order

(in instructions) u

- 1
sub$2,81,$3 |IM 'Heg| ~\H{oMH—Reg

L

and $12, $2, $5 N Rég

or $13, $6, $2 IM

add $14, $2,$2

| sw$15, 100($2)

|
DM RngI

Detecting the Need to Forward

= Pass register numbers along pipeline
= e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register
= ALU operand register numbers in EX stage
are given by
» ID/EX.RegisterRs, ID/EX.RegisterRt

= Data hazards when .
Fwd from

EX/MEM.RegisterRd = ID/EX.RegisterRs | | exivem
EX/MEM.RegisterRd = ID/EX.RegisterRt J [PiPeline reg

~N

MEM/WB.RegisterRd = ID/EX.RegisterRs | | Fwd from

MEM/WB_RegisterRd = ID/EX.RegisterRt | | hotine

Detecting the Need to Forward

= But only if forwarding instruction will write
to a register!

= EX/MEM.RegWrite, MEM/WB.RegWrite

= And only if Rd for that instruction is not
$zero

= EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

Forwarding Paths

ID/EX EX/MEM MEM/WB
» U -
—-] >
> X
— >
. ForwardA
Registers >ALU >
R - N
" "M
’ Data > E—
X l‘" memory
[. o
ForwardB
Rs]
e ,
i) m EX/MEM.Reglsteer=
Rd »| U
v

| Forwarding MEM/WB.RegisterRd

F

»\ unit
NI

b. With forwarding

Forwarding Conditions

= EX hazard

= if (EX/IMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

» if (EX/IMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

= MEM hazard

« if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

« if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

Double Data Hazard

= Consider the sequence:

adc , $1,9%2
ado , 51,9%3
add $1,51,%4

= Both hazards occur
= \Want to use the most recent

= Revise MEM hazard condition
= Only fwd if EX hazard condition isn't true

Revised Forwarding Condition

= MEM hazard
« if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

« if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Datapath with Forwarding

xoc=

ID/EX
’_’WB EX/MEM
Control [M -|WB MEM/WB
IF/ID EX M > WB—
- 7y
—y— l M
= U »
c i — X
(=] s d >
E .
E Registers {/_ > ALU - -
[2] >
Instruction| | |5 > ~(u
memory - R Data
i Ty g memory
L o
IF/ID.RegisterRs Rs . -
IF/ID.RegisterRt | [Rt
IF/ID.RegisterRt Rt . EX/MEM.RegisterRd
1 IF/ID.RegisterRd .| [Rd g >
MEM/WB.RegisterRd
L 4
-

Load-Use Data Hazard

Time (in clock cycles)
CcC1 ccz CC3 CC4 CCs5 CCes CcC7 cCs CC9

Program
execution
order

(in instructions) _

Iw $2, 20($1) IM Reg ®~

-

and $4, $2, $5 IM — FReg

- for one cycle
o

o

add $9, $4, $2 M |— —Dlr_ﬁeg _> oMk —|Ee_g_1:

= — =1
st $1, $6, $7 IM — 2Reg _> DM Reg|

or $8, $2, $6 IM

11

Load-Use Hazard Detection

= Check when using instruction is decoded
in ID stage

= ALU operand register numbers in ID stage
are given by
= IF/ID.RegisterRs, IF/ID.RegisterRt

= Load-use hazard when

» ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = |F/ID.RegisterRt))

= |f detected, stall and insert bubble

12

How to Stall the Pipeline

= Force control values in ID/EX register
to 0

= EX, MEM and WB do nop (no-operation)

= Prevent update of PC and IF/ID register
= Using instruction is decoded again
» Following instruction is fetched again

= 1-cycle stall allows MEM to read data for 1w
= Can subsequently forward to EX stage

13

Stall/Bubble in the Pipeline

o

Time (in clock cycles)

CC 1 cc2 CC3 CcC4

Program
execution
order

(in instructions) _ _

lw $2, 20($1)

o 1
M L eg| $~ —[DM TEE-QJ
R3] -
and becomes nop IM — L eg

and $4, $2, $5 IM -dReg|
or $8, $2, $6
| add $9, $4, $2

CC5

cCéo CcC7

IM —

)

cCs8

e

Reg

P

DM

CC9 CcC 10
Stall inserted
here

Reg

14

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CCH1 CcC2 CC3 CC4 CC5 cCé6 CC7 cCcs CC9 CC10

Program
execution
order

(in instructions}

lw $2, 20($1)

and becomes nop IM —

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

Reg
1

add $9, $4, $2 =
DM Reg

—_

Or, more
accurately...

15

Datapath with Hazard Detection

Hazard ID/EX.MemRead
>| detection |«
> unit /
__g 3
% ID/EX
£ m 0 e EX/MEM
. :Ttrjol = U M = WB L'\iEM/WB
2 X
3 IFJD 0 EX g -y
e
7
- > » M
» L >
5 - X
-§ Registers] \E > i >
5 - ™ JALU
pcl, | Instruction £ g g
memory || [| M Data s
- = U > memory
. X
IF/ID.RegisterRs . >
IF/ID.Registerht .
IF/ID.RegisterRt -
IF/ID.RegisterRd . "
ID/EX.RegisterRt -‘

o=

Stalls and Performance

= Stalls reduce performance
= But are required to get correct results

= Compiler can arrange code to avoid
hazards and stalls

= Requires knowledge of the pipeline structure

17

Branch Hazards

= |If branch outcome determined in MEM

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CCs6 CC7 CC8 CC9

Program
execution
order

(in instructions)

40 beq $1, $3, 28 IM ~|:|—U|rF;eg & -[DM —;|—|Ee_g1:
I = - | 1 \
44 and $12, $2, $5 IM — —E:Fieg | -[DM |— —Reg:
i U ! Flush these
4801813, 56,2 e, ov 4 \. | Instructions
- - (Set control
i i values to 0)
52 add $14, $2, $2 IM — —E:[Reg -I: DM — —Begi

172 Iw $4, 50(87) /,a M [R % -&H—Ee;‘:
PC i I

18

Reducing Branch Delay

= Move hardware to determine outcome to ID
stage
= [Target address adder
= Register comparator

= Example: branch taken

36: sub $10, %4, $8
40: beq $1, $3, 7

44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

72: 1w $4, 50($7)

Example: Branch Taken

and $12, $2, §5 i beq $1, 93,7 i sub $10, $4, $8 i before<i> E before<2>
IF.Flush
) Hazard X ' |
detection ' ' |
T__unit / : : :
1 IDJEX ' I
W [shen |
Control U M WB MEM/WB
X | | palik
"jP %_ 0 EX = M WB
44 _ =7 - I
D 14 o M
sy i $1 ~u—
=} X
Registers é L > ALU M
| > $3 (D u
orveen = u
ry P
/7\ - : memory
: -
5 T
"I o N >
: unit -

Clock 3

Example: Branch Taken

- Fluch Iw $4, 50(%7) ' Bubble (nop) | beq $1,$3,7 | sub $10,... . Dbefore<i>
.Flus ! ! ! :
E e | | s
detection | T I 1
unit / : | :
‘ DAEX : !
o oo e
&= Control = U M WB MEh&/WB
X L - '
O | - | LE g e
) 76 p : ¥ ﬁ
4—&V @ | —:— u $1 -
- . X
Registars I >ALU .
} Insirdction () u
memory B N I\Lf _$£1 Data X
[\ I I memory
¢ = - T

Clock 4

21

Data Hazards for Branches

= If a comparison register is a destination of
2" or 3" preceding ALU instruction

add , $2, $3 IF H ID _ EX _|MEM|—| WB
add 94, $5, $6 IF _ D _ EX :‘IE/IEMl_ WB
_ IF _ ID ___I:.f(__MEM|_ WB
beq . , target IF o' |||[ex _MEM||:| WB

Can resolve using forwarding

Data Hazards for Branches

= If a comparison register is a destination of
preceding ALU instruction or 2" preceding
load instruction

= Need 1 stall cycle

Tw $1, addr IF H e _|MEM|—| wB

add $4, $5, $6 IF : D : EX :‘IE/IEM|_ WB

2 HElslolo

beq $1, $4, target] ID_|: EX :MEM||:| WB

23

Data Hazards for Branches

= If a comparison register is a destination of
immediately preceding load instruction

= Need 2 stall cycles

Tw $1, addr IF H e _|MEM|—| wB

bec Aklolo|o

bec oo lo

beq $1, $0, target _ ID-|_ EX _MEM|H WB

Dynamic Branch Prediction

= |n deeper and superscalar pipelines, branch
penalty is more significant

= Use dynamic prediction
= Branch prediction buffer (aka branch history table)
= Indexed by recent branch instruction addresses
= Stores outcome (taken/not taken)

= [0 execute a branch
= Check table, expect the same outcome
« Start fetching from fall-through or target
= |f wrong, flush pipeline and flip prediction

25

Calculating the Branch Target

= Even with predictor, still need to calculate
the target address

= 1-cycle penalty for a taken branch

= Branch target buffer
= Cache of target addresses

= Indexed by PC when instruction fetched

=« If hit and instruction is branch predicted taken, can
fetch target immediately

26

Conclusions

ISA influences design of datapath and control
Datapath and control influence design of ISA

Pipelining improves instruction throughput
using parallelism

= More instructions completed per second

= Latency for each instruction not reduced
Hazards: structural, data, control

Multiple issue and dynamic scheduling (ILP)
= Dependencies limit achievable parallelism
= Complexity leads to the power wall

27

Practice Problem

Consider the following code segment in C:

a=b+e;

c=b+f;
Here is the generated MIPS code for this segment, assuming all
variables are in memory and are addressable as off sets from $tO0:

w $t1, 0($t0)
lw $t2, 4(5t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
w $t4, 8($t0)
add $t5, $t1,%t4
sw $t5, 16($t0)

Find the hazards in the preceding code segment and reorder the
instructions to avoid any pipeline stalls.

Practice Problem Solution

Both add instructions have a hazard because of their respective dependence on
the immediately preceding Iw instruction. Notice that bypassing eliminates
several other potential hazards, including the dependence of the first add on the
first Iw and any hazards for store instructions. Moving up the third Iw instruction to
become the third instruction eliminates both hazards:

w $t1, 0($t0)
lw $t2, 4($t0)
w $t4, 8($t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
add $t5, $t1,5t4
sw $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will complete
in two fewer cycles than the original version.

