
10. Pipeline 2: Hazards
(パイプライン2:ハザード)

FU05 Computer Architecture

Ben Abdallah Abderazek

E-mail: benab@u-aizu.ac.jp

Lectures of this course are adopted from the slides of the Book ‘’Computer Organization and Design - The Hardware/Software Interface, 5th Ed’’ by David. A. Patterson & John L. Hennessy

2

Data Hazards in ALU Instructions

◼ Consider this sequence:

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

◼ We can resolve hazards with forwarding

◼ How do we detect when to forward?

3

Dependencies & Forwarding

4

Detecting the Need to Forward

◼ Pass register numbers along pipeline
◼ e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

◼ ALU operand register numbers in EX stage
are given by
◼ ID/EX.RegisterRs, ID/EX.RegisterRt

◼ Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

5

Detecting the Need to Forward

◼ But only if forwarding instruction will write

to a register!

◼ EX/MEM.RegWrite, MEM/WB.RegWrite

◼ And only if Rd for that instruction is not

$zero

◼ EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

6

Forwarding Paths

7

Forwarding Conditions

◼ EX hazard

◼ if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

◼ if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

◼ MEM hazard

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

8

Double Data Hazard

◼ Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

◼ Both hazards occur

◼ Want to use the most recent

◼ Revise MEM hazard condition

◼ Only fwd if EX hazard condition isn’t true

9

Revised Forwarding Condition

◼ MEM hazard

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

10

Datapath with Forwarding

11

Load-Use Data Hazard

Need to stall

for one cycle

12

Load-Use Hazard Detection

◼ Check when using instruction is decoded
in ID stage

◼ ALU operand register numbers in ID stage
are given by

◼ IF/ID.RegisterRs, IF/ID.RegisterRt

◼ Load-use hazard when

◼ ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

◼ If detected, stall and insert bubble

13

How to Stall the Pipeline

◼ Force control values in ID/EX register

to 0

◼ EX, MEM and WB do nop (no-operation)

◼ Prevent update of PC and IF/ID register

◼ Using instruction is decoded again

◼ Following instruction is fetched again

◼ 1-cycle stall allows MEM to read data for lw

◼ Can subsequently forward to EX stage

14

Stall/Bubble in the Pipeline

Stall inserted

here

15

Stall/Bubble in the Pipeline

Or, more

accurately…

16

Datapath with Hazard Detection

17

Stalls and Performance

◼ Stalls reduce performance

◼ But are required to get correct results

◼ Compiler can arrange code to avoid

hazards and stalls

◼ Requires knowledge of the pipeline structure

18

Branch Hazards

◼ If branch outcome determined in MEM

PC

Flush these

instructions

(Set control

values to 0)

19

Reducing Branch Delay

◼ Move hardware to determine outcome to ID

stage

◼ Target address adder

◼ Register comparator

◼ Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

...
72: lw $4, 50($7)

20

Example: Branch Taken

21

Example: Branch Taken

22

Data Hazards for Branches

◼ If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

◼ Can resolve using forwarding

23

Data Hazards for Branches

◼ If a comparison register is a destination of

preceding ALU instruction or 2nd preceding

load instruction

◼ Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

24

Data Hazards for Branches

◼ If a comparison register is a destination of

immediately preceding load instruction

◼ Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

25

Dynamic Branch Prediction

◼ In deeper and superscalar pipelines, branch

penalty is more significant

◼ Use dynamic prediction

◼ Branch prediction buffer (aka branch history table)

◼ Indexed by recent branch instruction addresses

◼ Stores outcome (taken/not taken)

◼ To execute a branch

◼ Check table, expect the same outcome

◼ Start fetching from fall-through or target

◼ If wrong, flush pipeline and flip prediction

26

Calculating the Branch Target

◼ Even with predictor, still need to calculate

the target address

◼ 1-cycle penalty for a taken branch

◼ Branch target buffer

◼ Cache of target addresses

◼ Indexed by PC when instruction fetched

◼ If hit and instruction is branch predicted taken, can

fetch target immediately

27

Conclusions

◼ ISA influences design of datapath and control

◼ Datapath and control influence design of ISA

◼ Pipelining improves instruction throughput

using parallelism

◼ More instructions completed per second

◼ Latency for each instruction not reduced

◼ Hazards: structural, data, control

◼ Multiple issue and dynamic scheduling (ILP)

◼ Dependencies limit achievable parallelism

◼ Complexity leads to the power wall

Practice Problem

Consider the following code segment in C:

a = b + e;

c = b + f;

Here is the generated MIPS code for this segment, assuming all

variables are in memory and are addressable as off sets from $t0:

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1,$t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1,$t4

sw $t5, 16($t0)

Find the hazards in the preceding code segment and reorder the

instructions to avoid any pipeline stalls.

Practice Problem Solution

Both add instructions have a hazard because of their respective dependence on

the immediately preceding lw instruction. Notice that bypassing eliminates

several other potential hazards, including the dependence of the first add on the

first lw and any hazards for store instructions. Moving up the third lw instruction to

become the third instruction eliminates both hazards:

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1,$t2

sw $t3, 12($t0)

add $t5, $t1,$t4

sw $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will complete

in two fewer cycles than the original version.

