FUO5 Computer Architecture
9. Pipeline (/XA TS5 >)

Ben Abdallah Abderazek
E-mail: benab@u-aizu.ac.jp



Pipelining Analogy

= Pipelined laundry: overlapping execution
= Parallelism improves performance
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MIPS Pipeline

= Five stages, one step per stage

o bk bk

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register



= Assume time for stages is

Pipeline Performance

= 100ps for register read or write
= 200ps for other stages

= Compare pipelined datapath with single-cycle

datapath
Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
\W 200ps 100 ps 200ps 200ps 100 ps 800ps
S 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps




Pipeline Performance

Program
execution
order

(in instructions)

Time

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Program
execution Ti
order

(in instructions)

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Single-cycle (T.= 800ps)

200 ps 200 ps 200 ps 200 ps 200 ps

290 4C|)0 6(|)0 8C|)0 10|00 12|00 14|00 16|00 18|00
800 ps et neg| A | 2o | o
800 DS Insft;u:;t]ion
_ i.gop -
Pipelined (T.= 200ps)
200 400 600 800 1000 1200 1400
200 ps ["een | |Re9] AU | socess [R0
200ps | Jres| v | 2o lneg



Pipeline Speedup

= If all stages are balanced
= I.e., all take the same time

= Time between Instructions ;; qjineq
= Time between instructions
Number of stages

= If not balanced, speedup is less

= Speedup due to increased throughput

= Latency (time for each instruction) does not
decrease

nonpipelined




Pipelining and ISA Design

= MIPS ISA designed for pipelining

= All instructions are 32-bits
= Easier to fetch and decode in one cycle
= C.f. X86: 1- to 17-byte instructions

= Few and regular instruction formats
= Can decode and read registers in one step

= Load/store addressing

= Can calculate address in 3" stage, access memory
in 41 stage

= Alignment of memory operands
= Memory access takes only one cycle



Hazards

= Situations that prevent starting the next
Instruction in the next cycle

= Structure hazards
= Arequired resource Is busy

= Data hazard

= Need to walt for previous instruction to
complete its data read/write

= Control hazard

= Deciding on control action depends on
previous Iinstruction



Structure Hazards

= Conflict for use of a resource

= In MIPS pipeline with a single memory
= Load/store requires data access

= |Instruction fetch would have to stall for that
cycle
= Would cause a pipeline “bubble”
= Hence, pipelined datapaths require
separate Instruction/data memories

= Or separate Iinstruction/data caches



Data Hazards

= An instruction depends on completion of
data access by a previous instruction

= add $SO, $t0, $tl
sub $t2, $s0, $t3
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Time T I I I I I >

I =

add $s0, $t0, $t1 | IF —= 1D %—MEM WB |
bubble bubble (" bubble bubble) (" bubble
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sub $t2, $s0, $t3 IF —E ID %*MEM WBE
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Forwarding (aka Bypassing)

= Use result when it is computed
= Don’t wait for it to be stored in a register
= Requires extra connections in the datapath

Program
execution . 200 400 600 800 1000
order Time T T T T T

(in instructions)
add $s0, $t0, $t1 IF

MEM WB |

sub $t2, $s0, $t3
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Load-Use Data Hazard

= Can’t always avoid stalls by forwarding
= |f value not computed when needed
= Can’t forward backward in time!

Program
execution . 200 400 600 800 1000 1200 1400
order Time : : : ; . : .
(in instructions)

w $s0, 20($t1) IF

sub $t2, $s0, $t3
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Code Scheduling to Avoid Stalls

= Reorder code to avoid use of load result In
the next instruction

m CcodeforA = B + E; C = B + F;

stall

stall

lw  $tl1, 0($t0)

Tw ($t2)-4(5t0)

— add

sw $t3, 12($t0)

Tw ($t4)-8($t0)
— add $t5, $t1,

sw $t5, 16($t0)

13 cycles

add $t5, $t1;
sw $t5, 16($t0)

11 cycles
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Control Hazards

= Branch determines flow of control

= Fetching next instruction depends on branch
outcome

= Pipeline can’t always fetch correct instruction
= Still working on ID stage of branch
= In MIPS pipeline

= Need to compare registers and compute
target early in the pipeline

= Add hardware to do it in ID stage
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Stall on Branch

= Walit until branch outcome determined
before fetching next instruction

Program
execution Tim 200 400 600 800 1000 1200 1400 -
order ime T T T T I T T >
(in instructions)

add $4,$5, 86 ["He”"|  |Rea| AW | 058 [Reg

Instruction Data
beq $1, $2, 40 m fetch Reg| ALU | ,ccess |Pe9
bubble/_bubble/(_bubble/(bubble’(bubble
@ @ @ O
or $7, $8, $9 < »|Instruction Data
y 400 ps fetch Reg| ALU access | °9
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Branch Prediction

= Longer pipelines can’t readily determine
branch outcome early

= Stall penalty becomes unacceptable

= Predict outcome of branch
= Only stall if prediction is wrong
= In MIPS pipeline

= Can predict branches not taken
= Fetch instruction after branch, with no delay
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MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

Program
execution Time 2('30 4(|)0 6(.)0 8(?0 10|00 12|00 14.00
order
(in instructions)
a0ds4,55,95 "] [reo] v [ 2% Jees
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beq $1, 82,40 m fetch Reg| ALU access Reg
~—— > |nstruction Data
lw $3, 300($0) 200 ps | fetch Reg| ALV 1 aocess |Me9
A
Program
execution i 200 400 600 800 1000 1200 1400
order 1 I T I I I I
(in instructions)
Instruction Data
add $4, $5,$6 | rewen Reg| ALU | ccess | Fe9
Instruction Data
beq $1’ $2’ 40 m fetch Reg ALU access Reg
bubble/ bubble/( bubble/ bubble/(bubble
9
—or $7, $8, $9 <———————{Instruction Data
v 400 ps fetch Reg | ALU access | 9
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More-Realistic Branch Prediction

= Static branch prediction
= Based on typical branch behavior

= Example: loop and if-statement branches
= Predict backward branches taken
= Predict forward branches not taken

= Dynamic branch prediction

= Hardware measures actual branch behavior
= e.g., record recent history of each branch

= Assume future behavior will continue the trend
= When wrong, stall while re-fetching, and update history

18



Pipeline Summary

= Pipelining improves performance by
Increasing instruction throughput

= Executes multiple instructions in parallel
= Each instruction has the same latency

= Subject to hazards
= Structure, data, control

= Instruction set design affects complexity of
pipeline implementation
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MIPS Pipelined Datapath

IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM

Right-to-left
flow leads to
hazards

|
|
|
|
|
|
|
I
|
|
|
I
|
|
|
|
|
.
Ll
|
|
|
|
|
|
|
|

MEM: Memory access
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= Need registers between stages

Pipeline registers

= To hold information produced in previous cycle
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dddddddd
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Pipeline Operation

= Cycle-by-cycle flow of instructions through
the pipelined datapath
= "Single-clock-cycle” pipeline diagram
= Shows pipeline usage in a single cycle
« Highlight resources used

= C.f. “multi-clock-cycle” diagram
=« Graph of operation over time
= We'll look at “single-clock-cycle” diagrams
for load & store
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IF for Load, Store, ...

Iw

Instruction fetch

>Add
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Instruction
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ID for Load, Store, ...

Iw

Instruction decode

IFID ID/EX
Add
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EX for Loa

Read
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MEM for Load

IF/ID
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Address

Instruction
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WB for Load

Add
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Instruction
memory

Instruction

Wrong
register
number

Shift
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Corrected Datapath for Load

A J
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EX for

Store

sw

Execution
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PC

Y
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MEM for Store
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WB for Store

Add
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Multi-Cycle Pipeline Diagram

= Form showing resource usage

Time (in clock cycles)
CC1 CC2 CC3 CC4 CCs5 CCé6 CC7 CcCs8

CC9

Program
execution
order

(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

Iw $13, 24($1)

add $14, $5, $6

\




Multi-Cycle Pipeline Diagram

= Traditional form

Program
execution
order

(in instructions)

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

CC 1 cCc2 CcC3 CC4 CC5 CCe CC7 CC8 CC9
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction . Data .
fetch decode Execution access Write back
Instruction | Instruction Execution Data Write back
fetch decode access
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Single-Cycle Pipeline Diagram

= State of pipeline in a given cycle
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X extend -




Pipelined Control (S

implified)
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Pipelined Control

= Control signals derived from instruction
= As In single-cycle implementation

WB
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| [ ]

IF/ID ID/EX EX/MEM MEM/WB
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Pipelined Co

ntrol
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