FUO5 Computer Architecture
9. Pipeline (/XA TS5 >)

Ben Abdallah Abderazek
E-mail: benab@u-aizu.ac.jp

Pipelining Analogy

= Pipelined laundry: overlapping execution
= Parallelism improves performance

6 PM 7 8 9 10 11 12 1 2 AM

e .

Time
Task

W &= Four loads:

' g

¢ 8o 'llgl - Speedup

) 80=(=8/3.5=2.3
Time 6 PM 7 8 9 1|0 1|1 1|2 ‘; 2 TM N O n _StO p :
order Speedup

=2n/0.5n +1.5=4
= number of stages

MIPS Pipeline

= Five stages, one step per stage

o bk bk

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register

= Assume time for stages is

Pipeline Performance

= 100ps for register read or write
= 200ps for other stages

= Compare pipelined datapath with single-cycle

datapath
Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
\W 200ps 100 ps 200ps 200ps 100 ps 800ps
S 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

Pipeline Performance

Program
execution
order

(in instructions)

Time

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Program
execution Ti
order

(in instructions)

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Single-cycle (T.= 800ps)

200 ps 200 ps 200 ps 200 ps 200 ps

290 4C|)0 6(|)0 8C|)0 10|00 12|00 14|00 16|00 18|00
800 ps et neg| A | 2o | o
800 DS Insft;u:;t]ion
_ i.gop -
Pipelined (T.= 200ps)
200 400 600 800 1000 1200 1400
200 ps ["een | |Re9] AU | socess [R0
200ps | Jres| v | 2o lneg

Pipeline Speedup

= If all stages are balanced
= I.e., all take the same time

= Time between Instructions ;; qjineq
= Time between instructions
Number of stages

= If not balanced, speedup is less

= Speedup due to increased throughput

= Latency (time for each instruction) does not
decrease

nonpipelined

Pipelining and ISA Design

= MIPS ISA designed for pipelining

= All instructions are 32-bits
= Easier to fetch and decode in one cycle
= C.f. X86: 1- to 17-byte instructions

= Few and regular instruction formats
= Can decode and read registers in one step

= Load/store addressing

= Can calculate address in 3" stage, access memory
in 41 stage

= Alignment of memory operands
= Memory access takes only one cycle

Hazards

= Situations that prevent starting the next
Instruction in the next cycle

= Structure hazards
= Arequired resource Is busy

= Data hazard

= Need to walt for previous instruction to
complete its data read/write

= Control hazard

= Deciding on control action depends on
previous Iinstruction

Structure Hazards

= Conflict for use of a resource

= In MIPS pipeline with a single memory
= Load/store requires data access

= |Instruction fetch would have to stall for that
cycle
= Would cause a pipeline “bubble”
= Hence, pipelined datapaths require
separate Instruction/data memories

= Or separate Iinstruction/data caches

Data Hazards

= An instruction depends on completion of
data access by a previous instruction

= add $SO, $t0, $tl
sub $t2, $s0, $t3

, 200 400 600 800 1000 1200 1400 1600
Time T I I I I I >

I =

add $s0, $t0, $t1 | IF —= 1D %—MEM WB |
bubble bubble (" bubble bubble) (" bubble
@ @ O @ O
bubble bubble) (" bubble bubble,) (bubble
9 O @ O O

sub $t2, $s0, $t3 IF —E ID %*MEM WBE

10

Forwarding (aka Bypassing)

= Use result when it is computed
= Don’t wait for it to be stored in a register
= Requires extra connections in the datapath

Program
execution . 200 400 600 800 1000
order Time T T T T T

(in instructions)
add $s0, $t0, $t1 IF

MEM WB |

sub $t2, $s0, $t3

11

Load-Use Data Hazard

= Can’t always avoid stalls by forwarding
= |f value not computed when needed
= Can’t forward backward in time!

Program
execution . 200 400 600 800 1000 1200 1400
order Time : : : ; . : .
(in instructions)

w $s0, 20($t1) IF

sub $t2, $s0, $t3

12

Code Scheduling to Avoid Stalls

= Reorder code to avoid use of load result In
the next instruction

m CcodeforA = B + E; C = B + F;

stall

stall

lw $tl1, 0($t0)

Tw ($t2)-4(5t0)

— add

sw $t3, 12($t0)

Tw ($t4)-8($t0)
— add $t5, $t1,

sw $t5, 16($t0)

13 cycles

add $t5, $t1;
sw $t5, 16($t0)

11 cycles

13

Control Hazards

= Branch determines flow of control

= Fetching next instruction depends on branch
outcome

= Pipeline can’t always fetch correct instruction
= Still working on ID stage of branch
= In MIPS pipeline

= Need to compare registers and compute
target early in the pipeline

= Add hardware to do it in ID stage

14

Stall on Branch

= Walit until branch outcome determined
before fetching next instruction

Program
execution Tim 200 400 600 800 1000 1200 1400 -
order ime T T T T I T T >
(in instructions)

add $4,$5, 86 ["He”"| |Rea| AW | 058 [Reg

Instruction Data
beq $1, $2, 40 m fetch Reg| ALU | ,ccess |Pe9
bubble/_bubble/(_bubble/(bubble’(bubble
@ @ @ O
or $7, $8, $9 < »|Instruction Data
y 400 ps fetch Reg| ALU access | °9

15

Branch Prediction

= Longer pipelines can’t readily determine
branch outcome early

= Stall penalty becomes unacceptable

= Predict outcome of branch
= Only stall if prediction is wrong
= In MIPS pipeline

= Can predict branches not taken
= Fetch instruction after branch, with no delay

16

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

Program
execution Time 2('30 4(|)0 6(.)0 8(?0 10|00 12|00 14.00
order
(in instructions)
a0ds4,55,95 "] [reo] v [2% Jees
Instruction Data
beq $1, 82,40 m fetch Reg| ALU access Reg
~—— > |nstruction Data
lw $3, 300($0) 200 ps | fetch Reg| ALV 1 aocess |Me9
A
Program
execution i 200 400 600 800 1000 1200 1400
order 1 I T I I I I
(in instructions)
Instruction Data
add $4, $5,$6 | rewen Reg| ALU | ccess | Fe9
Instruction Data
beq $1’ $2’ 40 m fetch Reg ALU access Reg
bubble/ bubble/(bubble/ bubble/(bubble
9
—or $7, $8, $9 <———————{Instruction Data
v 400 ps fetch Reg | ALU access | 9

17

More-Realistic Branch Prediction

= Static branch prediction
= Based on typical branch behavior

= Example: loop and if-statement branches
= Predict backward branches taken
= Predict forward branches not taken

= Dynamic branch prediction

= Hardware measures actual branch behavior
= e.g., record recent history of each branch

= Assume future behavior will continue the trend
= When wrong, stall while re-fetching, and update history

18

Pipeline Summary

= Pipelining improves performance by
Increasing instruction throughput

= Executes multiple instructions in parallel
= Each instruction has the same latency

= Subject to hazards
= Structure, data, control

= Instruction set design affects complexity of
pipeline implementation

19

MIPS Pipelined Datapath

IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM

Right-to-left
flow leads to
hazards

|
|
|
|
|
|
|
I
|
|
|
I
|
|
|
|
|
.
Ll
|
|
|
|
|
|
|
|

MEM: Memory access

Address

Data
Memory

Write
data

Read|

data

WB: Write back

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Add I >
|
4 I App Add

| result
| [Shift

| \left2

|

|

|

»| Read Read : -

Pc Address register 1 data 1 | -
Read | AL |
register 2 | u ALllJ :

Instruction Registers ' >0 result |
: Write Read : m |
Instruction | | register data 2 | u :
memor x
Y 1 | write I | @ 1 [
| data | |
I | | -
l |
l [
l [
WB " | |
\\ | extend :
|
|
|
1
|
|
|
|

o

20

= Need registers between stages

Pipeline registers

= To hold information produced in previous cycle

IIIII

MMMMM

dddddddd

21

Pipeline Operation

= Cycle-by-cycle flow of instructions through
the pipelined datapath
= "Single-clock-cycle” pipeline diagram
= Shows pipeline usage in a single cycle
« Highlight resources used

= C.f. “multi-clock-cycle” diagram
=« Graph of operation over time
= We'll look at “single-clock-cycle” diagrams
for load & store

— 22

IF for Load, Store, ...

Iw

Instruction fetch

>Add

Address

Instruction
memory

IF/ID

ID/EX

Instruction

Shift
left 2

. | Read
" | register 1 Read
data 1
Read
register 2
Registers Rgaq
Write data 2
register
) Write
data
16 i
2 Sign-
v extend

32

d Add
result

MEM/WB

EX/MEM

-
> @ Address
_ _ | Write
v 7| data

Data
memory

Read
data

Y

23

ID for Load, Store, ...

Iw

Instruction decode

IFID ID/EX
Add
4 ——
Shift
left 2
=
Address .% Read
2 register 1 Read
B data 1
= Read
Instruction register 2
memory ~ Registers gaqq
Write data 2
register
Write
| data

18 Sign-

%" extend

32

4 Add
result

EX/MEM MEM/WB
=
Read
~@=>| Address data ™ —
Data
memory
_ | Write
" | data

24

EX for Loa

Read
data

MEM/WB

| w |
| Execution
IF/ID ID/EX EX/MEM
E—
Add g
) AddAdd -
Shift result
left 2
0
M
u PC Address 5 Read
" S[7 | register 1 Read
1 5 data 1
= Read > "
w = i
Instruction <= regISteFr{ggisters g
memory B Write Read .
register data 2 Data
Write memen
data
Write
> *| data
1 "
? | sign- 32 |
| extend

“x c 2°

25

MEM for Load

IF/ID

Add

Address

Instruction
memory

Y

ID/EX

Instruction

Shift
left 2

Read
" | register 1 Read
data 1
Read
register 2
Registers goaq
Write data 2
register
Write
data
16 | sign-

v | extend

Write
data

| lw |

I Memory I
EX/MEM MEMAWB

-
Read
> @ Address data [
Data
memory

Y

26

WB for Load

Add

IF/ID

ID/EX

PC Address

Instruction
memory

Instruction

Wrong
register
number

Shift
left 2

Read
register 1 Read >
data 1
Read
ister 2
Registers pgqqq
Write data 2 -
regisgér
rite
data
16 ¢ 32
N Sign-

v\ extend

EX/MEM
Add

result
> =
> |- Address

Data
memory

o Write
o data

Read
data

rite back

MEM/WB

27

Corrected Datapath for Load

A J

Add

IFID

Address

Instruction
memory

o | Read
"~ | register 1

Instruction

Read
register 2

Write
register
Write
data

!

Read
data 1

Registers gaaq

data 2

Sign-
extend

ID/EX EX/MEM
Add e’;“ﬂ
Shift resu
left 2
—
> . @ Address
Write
data

\

Data
memory

Read
data

MEM/WB

28

EX for

Store

sw

Execution

xc=°

PC

Y

IF/ID ID/EX EX/MEM MEM/WB
Add - - \
4 AdgAdd -
Shift result
left 2
Address c . | Read Read
2 register 1 ea
S data 1
7 »| Read Zero >
Instruction _ < register 2 ALU AU N Read
memory o —e | write ReglsiersRead result > Address data .
- register data 2 Data
; memor
—| Write - y
data
-~ Write
- data
1? sign- | 32]
v extend

“xc =2°

29

MEM for Store

Add

ID/EX

Address

Instruction

memory

Instruction

Read

register 1

Read
register 2

Registers

Write
register
Write
data

Shift
left 2

Write
data

| SW |

| Memory l
EX/MEM MEM/WB
- >

Read
> —@—>| Address data [
Data
memory

WB for Store

Add

IF/ID

ID/EX

Address

Instruction
memory

Instruction

Shift
left 2

Read

register 1 Read
data 1

Read

register 2

Registers Rooq

Write data 2

register

Write

data

EX/MEM
Add

result
- >
- |-@—»-| Address

Data
memory

_ Write
o data

Read
data

sw
w

rite-back

MEM/WB

31

Multi-Cycle Pipeline Diagram

= Form showing resource usage

Time (in clock cycles)
CC1 CC2 CC3 CC4 CCs5 CCé6 CC7 CcCs8

CC9

Program
execution
order

(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

Iw $13, 24($1)

add $14, $5, $6

\

Multi-Cycle Pipeline Diagram

= Traditional form

Program
execution
order

(in instructions)

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

CC 1 cCc2 CcC3 CC4 CC5 CCe CC7 CC8 CC9
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction . Data .
fetch decode Execution access Write back
Instruction | Instruction Execution Data Write back
fetch decode access

33

Single-Cycle Pipeline Diagram

= State of pipeline in a given cycle

add §14, $5, $6

lw $13, 24 ($1)

add $12, $3, $4

sub $11, $2, $3

| Iw $10, 20($1) |

Instruction fetch Instruction decode | Execution | Memory | Write-back
IF/ID ID/EX EX/MEM MEM/WB
Add >
¢ oot
Shift
left 2
0
M
u PC » Address Read
x S register 1 Read
-\ 1 = data 1
E Read Zero =
& - i
Instruction = register2 ALU
Registers ALU Read
memory mi | wiite 9 g:t:dz > result Address data [|

register Data

Write memory

data [

Write
data
1? sign- | 32
X extend -

Pipelined Control (S

implified)

MemtoReg

PCSrc
IF/ID ID/IEX EX/MEM MEM/WB
Add > >
4 AddAd? -
Shift result Branch
left 2 I_:
L0 RegWrite
M |
u PC »[Address & | Read
x 5 ™ register 1 Read > MemWrite
>\ 1 = data 1 |
@ .| Read
Instruction ~ ~ | register 2 Read
— Registers >
memory wiite o2 Read > Address data [|
register data 2 Data
—»-| Write memory
data
_ Write
. " | data
Instruction
(15-0) 16 [gjgn. | 32 & [A 1 >
¥ extend "~ | control MemRead
Instruction
(20-16)
> 0) ALUOp
M > >
Instruction :
(15-11) 1
> —a
RegDst

35

Pipelined Control

= Control signals derived from instruction
= As In single-cycle implementation

WB

e

[T
| []

IF/ID ID/EX EX/MEM MEM/WB

36

Pipelined Co

ntrol

PCSrc
ID/EX
W8 LfoMEM
Control M WB | MEM/WB
EX M WwB
IF/ID
Add - \
4 Adg Ao
shift resu Branch
jg left 2 L]
= ALUSrc
g —
o] o e
M Add g Read =
u PC ress ea £
X = register 1 Read 2
L1 > data 1
g Flea;dT 5 Zero —
Instruction - register ALU 71U Read
—e ; > H
memory Write Reglsterst?ag 6 result Address gata [T
> § ata M
register u Data
Write X memory
data o1
Write
data
Instruction
[15-0] 16 sign- | 32 ?
Y @ X > control MemRead
Instruction
[20-16]
> 0
M -
Instruction u
[15-11] X

MemtoReg

xcz©

RegDst

37

