
7. Datapath (データパス) 

FU05 Computer Architecture

Ben Abdallah Abderazek

E-mail: benab@u-aizu.ac.jp

Lectures of this course are adopted from the slides of the Book ‘’Computer Organization and Design - The Hardware/Software Interface, 5th Ed’’ by David. A. Patterson & John L. Hennessy



2

Introduction

◼ CPU performance factors
◼ Instruction count

◼ Determined by ISA and compiler

◼ CPI and Cycle time
◼ Determined by CPU hardware

◼ We will examine two MIPS implementations
◼ A simplified version

◼ A more realistic pipelined version

◼ Simple subset, shows most aspects
◼ Memory reference: lw, sw

◼ Arithmetic/logical: add, sub, and, or, slt

◼ Control transfer: beq, j



3

Instruction Execution

◼ PC → instruction memory, fetch instruction

◼ Register numbers→ register file, read registers

◼ Depending on instruction class

◼ Use ALU to calculate

◼ Arithmetic result

◼ Memory address for load/store

◼ Branch target address

◼ Access data memory for load/store

◼ PC  target address or PC + 4



4

CPU Overview



5

Multiplexers

◼ Can’t just join 

wires together

◼ Use multiplexers



6

Control



7

Logic Design Basics

◼ Information encoded in binary

◼ Low voltage = 0, High voltage = 1

◼ One wire per bit

◼ Multi-bit data encoded on multi-wire buses

◼ Combinational element

◼ Operate on data

◼ Output is a function of input

◼ State (sequential) elements

◼ Store information



Combinational Elements

◼ AND-gate

◼ Y = A & B

A

B
Y

I0

I1
Y

M

u

x

S

◼ Multiplexer

◼ Y = S ? I1 : I0

A

B

Y+

A

B

YALU

F

◼ Adder

◼ Y = A + B

◼ Arithmetic/Logic Unit

◼ Y = F(A, B)

8



9

Sequential Elements

◼ Register: stores data in a circuit

◼ Uses a clock signal to determine when to 

update the stored value

◼ Edge-triggered: update when Clk changes 

from 0 to 1

D

Clk

Q

Clk

D

Q



10

Sequential Elements

◼ Register with write control

◼ Only updates on clock edge when write 

control input is 1

◼ Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk



11

Clocking Methodology

◼ Combinational logic transforms data during 
clock cycles

◼ Between clock edges

◼ Input from state elements, output to state 
element

◼ Longest delay determines clock period



12

Building a Datapath

◼ Datapath

◼ Elements that process data and addresses

in the CPU

◼ Registers, ALUs, mux’s, memories, …

◼ We will build a MIPS datapath 

incrementally

◼ Refining the overview design



13

Instruction Fetch

32-bit 

register

Increment by 

4 for next 

instruction



14

R-Format Instructions

◼ Read two register operands

◼ Perform arithmetic/logical operation

◼ Write register result



15

Load/Store Instructions

◼ Read register operands

◼ Calculate address using 16-bit offset
◼ Use ALU, but sign-extend offset

◼ Load: Read memory and update register

◼ Store: Write register value to memory



16

Branch Instructions

◼ Read register operands

◼ Compare operands

◼ Use ALU, subtract and check Zero output

◼ Calculate target address

◼ Sign-extend displacement

◼ Shift left 2 places (word displacement)

◼ Add to PC + 4

◼ Already calculated by instruction fetch



17

Branch Instructions

Just

re-routes 

wires

Sign-bit wire 

replicated



18

Composing the Elements

◼ First-cut data path does an instruction in 

one clock cycle

◼ Each datapath element can only do one 

function at a time

◼ Hence, we need separate instruction and data 

memories

◼ Use multiplexers where alternate data 

sources are used for different instructions



19

R-Type/Load/Store Datapath



20

Full Datapath



21

ALU Control

◼ ALU used for

◼ Load/Store: F = add

◼ Branch: F = subtract

◼ R-type: F depends on funct field

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR



22

ALU Control

◼ Assume 2-bit ALUOp derived from opcode

◼ Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111



23

The Main Control Unit

◼ Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/

Store

Branch

opcode always 

read

read, 

except 

for load

write for 

R-type 

and load

sign-extend 

and add



Exercise 

4.2 The basic single-cycle MIPS implementation in 

Figure 4.2 can only implement some instructions. 

New instructions can be added to an existing 

Instruction Set Architecture (ISA), but the decision 

whether or not to do that depends, among other 

things, on the cost and complexity the proposed 

addition introduces into the processor datapath and 

control. The first three problems in this exercise refer 

to the new instruction:

Instruction: LWI Rt,Rd(Rs)

Interpretation: Reg[Rt] = Mem[Reg[Rd]+Reg[Rs]]

24



Exercise 4.2 Solution

4.2.1 This instruction uses instruction memory, 

both register read ports, the ALU to add Rd and Rs 

together, data memory, and write port in Registers.

4.2.2 None. This instruction can be implemented 

using existing blocks.

4.2.3 None. This instruction can be implemented 

without adding new control signals. It only requires 

changes in the Control logic.

25


