
3. Assembly Language (アセンブリ言語)

FU05 Computer Architecture

Ben Abdallah Abderazek

E-mail: benab@u-aizu.ac.jp

Lectures of this course are adopted from the slides of the Book ‘’Computer Organization and Design - The Hardware/Software Interface, 5th Ed’’ by David. A. Patterson & John L. Hennessy

2

Levels of Program Code

◼ High-level language
◼ Level of abstraction closer to

problem domain

◼ Provides for productivity and
portability

◼ Assembly language
◼ Textual representation of

instructions

◼ Hardware representation
◼ Binary digits (bits)

◼ Encoded instructions and data

3

Stored Program Computers

◼ Instructions represented in
binary, just like data

◼ Instructions and data stored
in memory

◼ Programs can operate on
programs
◼ e.g., compilers, linkers, …

◼ Binary compatibility allows
compiled programs to work
on different computers
◼ Standardized ISAs

Why use Assembly Language

Programing ?

◼ When speed is critical. Maybe use

Assembly Language for critical

components.

◼ When no High Lever Language compiler

is available for a machine.

◼ To exploit specialized machine

capabilities.

◼ When one wants to debug particularly

complex structures.

4

5

Instruction Set

◼ The language of a computer

◼ Different computers have different
instruction sets

◼ Early computers had very simple
instruction sets

◼ Many modern computers also have simple
instruction sets

Instruction Set Architecture (ISA)

◼ Instruction Categories

◼ Computational

◼ Load/Store

◼ Jump and Branch

◼ Floating Point

◼ coprocessor

◼ Memory Management

◼ Special

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format
6

7

Arithmetic Operations

◼ Add and subtract, three operands (オペランド)

◼ Two sources and one destination

add a, b, c # a gets b + c

◼ All arithmetic operations have this form

◼ Design Principle 1: Simplicity favours

regularity

◼ Regularity makes implementation simpler

◼ Simplicity enables higher performance at

lower cost

8

Arithmetic Example

◼ C code:

f = (g + h) - (i + j);

◼ Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

9

Register Operands

◼ Arithmetic instructions use register
operands

◼ MIPS has a 32 × 32-bit register file
◼ Use for frequently accessed data

◼ Numbered 0 to 31

◼ 32-bit data called a “word”

◼ Assembler names
◼ $t0, $t1, …, $t9 for temporary values

◼ $s0, $s1, …, $s7 for saved variables

◼ Design Principle 2: Smaller is faster

10

Register Operand Example

◼ C code:

f = (g + h) - (i + j);

◼ f, …, j in $s0, …, $s4

◼ Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

11

Memory Operands

◼ Main memory used for composite data
◼ Arrays, structures, dynamic data

◼ To apply arithmetic operations
◼ Load values from memory into registers

◼ Store result from register to memory

◼ Memory is byte addressed
◼ Each address identifies an 8-bit byte

◼ Words are aligned in memory
◼ Address must be a multiple of 4

◼ MIPS is Big Endian
◼ Most-significant byte at least address of a word

◼ c.f. Little Endian: least-significant byte at least address

Word-Addressable Memory

◼ Each 32-bit data word has a unique

address

13

Word Address Data

Big-Endian and Little-Endian Memory

◼ How to number bytes within a word?

◼ Word address is the same for big- or little-endian

◼ Little-endian: byte numbers start at the little (least

significant) end

◼ Big-endian: byte numbers start at the big (most

significant) end

14

Big-Endian Little-Endian

MSB LSB MSB LSB

Big- and Little-Endian Example

◼ Suppose $t0 initially contains 0x23456789. After

the following program is run on a big-endian

system, what value does $s0 contain? In a little-

endian system?

sw $t0, 0($0)

lb $s0, 1($0)

◼ Big-endian: ……..?

◼ Little-endian: ……?

15

Big-Endian Little-Endian

Big- and Little-Endian Example

◼ Suppose $t0 initially contains 0x23456789. After

the following program is run on a big-endian

system, what value does $s0 contain? In a little-

endian system?

sw $t0, 0($0)

lb $s0, 1($0)

◼ Big-endian: 0x00000045

◼ Little-endian: 0x00000067

16

Big-Endian Little-Endian

12

Memory Operand Example 1

◼ C code:

g = h + A[8];

◼ g in $s1, h in $s2, base address of A in $s3

◼ Compiled MIPS code:

◼ Index 8 requires offset of 32

◼ 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

13

Memory Operand Example 2

◼ C code:

A[12] = h + A[8];

◼ h in $s2, base address of A in $s3

◼ Compiled MIPS code:

◼ Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

14

Registers vs. Memory

◼ Registers are faster to access than
memory

◼ Operating on memory data requires loads
and stores

◼ More instructions to be executed

◼ Compiler must use registers for variables
as much as possible

◼ Only spill to memory for less frequently used
variables. Why?

Answer:

15

Immediate Operands

◼ Constant data specified in an instruction

addi $s3, $s3, 4

◼ No subtract immediate instruction

◼ Just use a negative constant

addi $s2, $s1, -1

◼ Design Principle 3: Make the common

case fast

◼ Small constants are common

◼ Immediate operand avoids a load instruction

16

MIPS register 0

◼ MIPS register 0 ($zero) is the constant 0

◼ Cannot be overwritten

◼ Useful for common operations

◼ E.g., move between registers

add $t2, $s1, $zero

MIPS Register Convention
Name Register

Number
Usage Preserve

on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes
17

18

Representing Instructions

◼ Instructions are encoded in binary

◼ Called machine code (機械語)

◼ MIPS instructions

◼ Encoded as 32-bit instruction words

◼ Small number of formats encoding operation code

(opcode), register numbers, …

◼ Register numbers

◼ $t0 – $t7 are reg’s 8 – 15

◼ $t8 – $t9 are reg’s 24 – 25

◼ $s0 – $s7 are reg’s 16 – 23

19

MIPS R-format Instructions

◼ Instruction fields

◼ op: operation code (opcode)

◼ rs: first source register number

◼ rt: second source register number

◼ rd: destination register number

◼ shamt: shift amount (00000 for now)

◼ funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

20

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

21

Hexadecimal

◼ Base 16

◼ Compact representation of bit strings

◼ 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

◼ Example: eca8 6420

◼ 1110 1100 1010 1000 0110 0100 0010 0000

22

MIPS I-format Instructions

◼ Immediate arithmetic and load/store instructions
◼ rt: destination or source register number

◼ Constant: –215 to +215 – 1

◼ Address: offset added to base address in rs

◼ Design Principle 4: Good design demands good
compromises
◼ Different formats complicate decoding, but allow 32-bit

instructions uniformly

◼ Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

23

Conditional Operations (分岐命令)

◼ Branch to a labeled instruction if a
condition is true

◼ Otherwise, continue sequentially

◼ beq rs, rt, L1
◼ if (rs == rt) branch to instruction labeled L1;

◼ bne rs, rt, L1
◼ if (rs != rt) branch to instruction labeled L1;

◼ j L1
◼ unconditional jump to instruction labeled L1

24

Compiling If Statements

◼ C code:

if (i==j) f = g+h;
else f = g-h;

◼ f, g, … in $s0, $s1, …

◼ Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

25

Compiling Loop Statements

◼ C code:

while (save[i] == k) i += 1;

◼ i in $s3, k in $s5, address of save in $s6

◼ Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

26

More Conditional Operations

◼ Set result to 1 if a condition is true

◼ Otherwise, set to 0

◼ slt rd, rs, rt

◼ if (rs < rt) rd = 1; else rd = 0;

◼ slti rt, rs, constant

◼ if (rs < constant) rt = 1; else rt = 0;

◼ Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

27

Branch Addressing

◼ Branch instructions specify

◼ Opcode, two registers, target address

◼ Most branch targets are near branch

◼ Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

◼ PC-relative addressing

◼ Target address = PC + offset × 4

◼ PC already incremented by 4 by this time

28

Jump Addressing

◼ Jump (j and jal) targets could be

anywhere in text segment

◼ Encode full address in instruction

op address

6 bits 26 bits

◼ (Pseudo)Direct jump addressing

◼ Target address = PC31…28 : (address × 4)

29

Target Addressing Example

◼ Loop code from earlier example

◼ Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

30

Branching Far Away

◼ If branch target is too far to encode with

16-bit offset, assembler rewrites the code

◼ Example

beq $s0,$s1, L1

↓

bne $s0,$s1, L2
j L1

L2: …

Example

31

Instruction Example Meaning

jump j 2500 go to 10000

jump register jr $31 go to $31

jump and link jal 2500 $31 = PC+4; go to 10000

branch on equal beq $1, $2, 25 if($1==$2) go to PC+4+100

branch on not equal bne $1, $2, 25 if($1!=$2) go to PC+4+100

set on less than slt $1, $2, $3 if($2<$3) $1=1 else $1=0

set less than imm. slti $1, $2, 100 if($2<100) $1=1 else $1=0

32

Addressing Mode Summary

Practice Problem (練習問題)

2.1 For the following C statement, what is the

corresponding MIPS assembly code? Assume that

the variables f, g, h and i are given and could be

considered 32-bit integers as declared in a C

program. Use a minimal number of MIPS assembly

instructions.

f = g + (h − 5);

33

Practice Problem (練習問題)

34

Solution

2.1

Practice Problem (練習問題)

35

Solution

2.1

addi f, h, -5 (note, no subi)

add f, f, g

