FU05 Computer Architecture

3. Assembly Language (アセンブリ言語)

Ben Abdallah Abderazek

E-mail: benab@u-aizu.ac.jp

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

0000001111100000000000000000001000

Stored Program Computers

 Instructions represented in binary, just like data

- Instructions and data stored in memory
- Programs can operate on programs
 - e.g., compilers, linkers, ...
- Binary compatibility allows compiled programs to work on different computers
 - Standardized ISAs

Why use Assembly Language Programing?

- When speed is critical. Maybe use Assembly Language for critical components.
- When no High Lever Language compiler is available for a machine.
- To exploit specialized machine capabilities.
- When one wants to debug particularly complex structures.

Instruction Set

- The language of a computer
- Different computers have different instruction sets
- Early computers had very simple instruction sets
- Many modern computers also have simple instruction sets

Instruction Set Architecture (ISA)

- Instruction Categories
 - Computational
 - Load/Store
 - Jump and Branch
 - Floating Point
 - coprocessor
 - Memory Management
 - Special

3 Instruction Formats: all 32 bits wide

OP	rs	rt	rd	sa	funct] R format	
OP	rs	rt	imm] I format			
ОР	OP jump target						

Arithmetic Operations

- Add and subtract, three operands (オペランド)
 - Two sources and one destination

```
add a, b, c # a gets b + c
```

- All arithmetic operations have this form
- Design Principle 1: Simplicity favours regularity
 - Regularity makes implementation simpler
 - Simplicity enables higher performance at lower cost

Arithmetic Example

C code:

```
f = (g + h) - (i + j);
```

Compiled MIPS code:

```
add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1
```

Register Operands

- Arithmetic instructions use register operands
- MIPS has a 32 x 32-bit register file
 - Use for frequently accessed data
 - Numbered 0 to 31
 - 32-bit data called a "word"
- Assembler names
 - \$t0, \$t1, ..., \$t9 for temporary values
 - \$s0, \$s1, ..., \$s7 for saved variables
- Design Principle 2: Smaller is faster

Register Operand Example

C code:

```
f = (g + h) - (i + j);

• f, ..., j in $s0, ..., $s4
```

Compiled MIPS code:

```
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
```

Memory Operands

- Main memory used for composite data
 - Arrays, structures, dynamic data
- To apply arithmetic operations
 - Load values from memory into registers
 - Store result from register to memory
- Memory is byte addressed
 - Each address identifies an 8-bit byte
- Words are aligned in memory
 - Address must be a multiple of 4
- MIPS is Big Endian
 - Most-significant byte at least address of a word
 - c.f. Little Endian: least-significant byte at least address

Word-Addressable Memory

Each 32-bit data word has a unique address

Big-Endian and Little-Endian Memory

- How to number bytes within a word?
- Word address is the same for big- or little-endian
 - Little-endian: byte numbers start at the little (least significant) end
 - Big-endian: byte numbers start at the big (most significant) end

Big- and Little-Endian Example

Suppose \$t0 initially contains 0x23456789. After the following program is run on a big-endian system, what value does \$s0 contain? In a littleendian system?

```
sw $t0, 0($0)
lb $s0, 1($0)
```

- Big-endian:?
- Little-endian:?

Big-Endian Little-Endian Byte Address 0 1 2 3 Address 3 2 1 0 Byte Address Data Value 23 45 67 89 Data Value MSB LSB MSB LSB

Big- and Little-Endian Example

Suppose \$t0 initially contains 0x23456789. After the following program is run on a big-endian system, what value does \$s0 contain? In a littleendian system?

- Big-endian: 0x00000045
- Little-endian: 0x00000067

Memory Operand Example 1

C code:

```
g = h + A[8];
```

- g in \$\$1, h in \$\$2, base address of A in \$\$3
- Compiled MIPS code:
 - Index 8 requires offset of 32
 - 4 bytes per word

Memory Operand Example 2

C code:

```
A[12] = h + A[8];
```

h in \$\$2, base address of A in \$\$3

- Compiled MIPS code:
 - Index 8 requires offset of 32

```
lw $t0, 32($s3)  # load word
add $t0, $s2, $t0
sw $t0, 48($s3)  # store word
```

Registers vs. Memory

- Registers are faster to access than memory
- Operating on memory data requires loads and stores
 - More instructions to be executed
- Compiler must use registers for variables as much as possible
 - Only spill to memory for less frequently used variables. Why?

A	n	S	W	ρ	r	•
$\overline{}$		J	••	V	•	-

Immediate Operands

Constant data specified in an instruction
 addi \$s3, \$s3, 4

- No subtract immediate instruction
 - Just use a negative constant addi \$\$2, \$\$1, -1
- Design Principle 3: Make the common case fast
 - Small constants are common
 - Immediate operand avoids a load instruction

MIPS register 0

- MIPS register 0 (\$zero) is the constant 0
 - Cannot be overwritten
- Useful for common operations
 - E.g., move between registers

```
add $t2, $s1, $zero
```

MIPS Register Convention

Name	Register Number	Usage	Preserve on call?
\$zero	0	constant 0 (hardware)	n.a.
\$at	1	reserved for assembler	n.a.
\$v0 - \$v1	2-3	returned values	no
\$a0 - \$a3	4-7	arguments	yes
\$t0 - \$t7	8-15	temporaries	no
\$s0 - \$s7	16-23	saved values	yes
\$t8 - \$t9	24-25	temporaries	no
\$gp	28	global pointer	yes
\$sp	29	stack pointer	yes
\$fp	30	frame pointer	yes
\$ra	31	return addr (hardware)	yes

Representing Instructions

- Instructions are encoded in binary
 - Called machine code (機械語)
- MIPS instructions
 - Encoded as 32-bit instruction words
 - Small number of formats encoding operation code (opcode), register numbers, ...
- Register numbers
 - \$t0 \$t7 are reg's 8 15
 - \$t8 \$t9 are reg's 24 25
 - \$s0 \$s7 are reg's 16 23

MIPS R-format Instructions

Instruction fields

- op: operation code (opcode)
- rs: first source register number
- rt: second source register number
- rd: destination register number
- shamt: shift amount (00000 for now)
- funct: function code (extends opcode)

R-format Example

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

add \$t0, \$s1, \$s2

special	\$s1	\$s2	\$tO	0	add
0	17	18	8	0	32
000000	10001	10010	01000	00000	100000

 $00000010001100100100000000100000_2 = 02324020_{16}$

Hexadecimal

- Base 16
 - Compact representation of bit strings
 - 4 bits per hex digit

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	d	1101
2	0010	6	0110	а	1010	Ф	1110
3	0011	7	0111	b	1011	f	1111

- Example: eca8 6420
 - 1110 1100 1010 1000 0110 0100 0010 0000

MIPS I-format Instructions

- Immediate arithmetic and load/store instructions
 - rt: destination or source register number
 - Constant: -2¹⁵ to +2¹⁵ 1
 - Address: offset added to base address in rs
- Design Principle 4: Good design demands good compromises
 - Different formats complicate decoding, but allow 32-bit instructions uniformly
 - Keep formats as similar as possible

Conditional Operations (分岐命令)

- Branch to a labeled instruction if a condition is true
 - Otherwise, continue sequentially
- beq rs, rt, L1
 - if (rs == rt) branch to instruction labeled L1;
- bne rs, rt, L1
 - if (rs != rt) branch to instruction labeled L1;
- j L1
 - unconditional jump to instruction labeled L1

Compiling If Statements

C code:

```
if (i==j) f = g+h;
else f = g-h;
```

- f, g, ... in \$s0, \$s1, ...
- Compiled MIPS code:


```
bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit
Else: sub $s0, $s1, $s2
```

Exit: *...

Assembler calculates addresses

Compiling Loop Statements

C code:

```
while (save[i] == k) i += 1;
```

- i in \$s3, k in \$s5, address of save in \$s6
- Compiled MIPS code:

```
Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop
Exit: ...
```

More Conditional Operations

- Set result to 1 if a condition is true
 - Otherwise, set to 0
- slt rd, rs, rt
 - if (rs < rt) rd = 1; else rd = 0;
- slti rt, rs, constant
 - if (rs < constant) rt = 1; else rt = 0;</p>
- Use in combination with beq, bne

```
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L
```

Branch Addressing

- Branch instructions specify
 - Opcode, two registers, target address
- Most branch targets are near branch
 - Forward or backward

- PC-relative addressing
 - Target address = PC + offset x 4
 - PC already incremented by 4 by this time

Jump Addressing

- Jump (j and jal) targets could be anywhere in text segment
 - Encode full address in instruction

ор	address
6 bits	26 bits

- (Pseudo)Direct jump addressing
 - Target address = $PC_{31...28}$: (address × 4)

Target Addressing Example

- Loop code from earlier example
 - Assume Loop at location 80000

Loop:	s11	\$t1,	\$s3,	2	80000	0	0	19	9	4	0
	add	\$t1,	\$t1,	\$ s6	80004	0	9	22	9	0	32
	٦w	\$t0,	0(\$t	1)	80008	35	9	8		0	
	bne	\$t0,	\$s5,	Exit	80012	5	8	21		2	
	addi	\$s3,	\$s3,	1	80016	8	19	19	A R R R	1	
	j	Loop			80020	2	ARRESES.	***	20000		
Exit:					80024						

Branching Far Away

- If branch target is too far to encode with 16-bit offset, assembler rewrites the code
- Example

```
beq $s0,$s1, L1

↓
bne $s0,$s1, L2
j L1
L2: ...
```

Example

Instruction	Example	Meaning
jump	j 2500	go to 10000
jump register	jr \$31	go to \$31
jump and link	jal 2500	\$31 = PC+4; go to 10000
branch on equal	beq \$1, \$2, 25	if(\$1==\$2) go to PC+4+100
branch on not equal	bne \$1, \$2, 25	if(\$1!=\$2) go to PC+4+100
set on less than	slt \$1, \$2, \$3	if(\$2<\$3) \$1=1 else \$1=0
set less than imm.	slti \$1, \$2, 100	if(\$2<100) \$1=1 else \$1=0

Addressing Mode Summary

Practice Problem (練習問題)

2.1 For the following C statement, what is the corresponding MIPS assembly code? Assume that the variables f, g, h and i are given and could be considered 32-bit integers as declared in a C program. Use a minimal number of MIPS assembly instructions.

$$f = g + (h - 5);$$

Practice Problem (練習問題)

Solution			
2.1			

Practice Problem (練習問題)

Solution

2.1

addi f, h, -5 (note, no subi) add f, f, g